LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

Article 

Google Scholar
 

Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).

Article 

Google Scholar
 

Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

Article 

Google Scholar
 

Guo, C. et al. Action2motion: Conditioned generation of 3d human motions. In Proc. of the 28th ACM International Conference on Multimedia, 2021–2029 (Association for Computing Machinery, 2020).

Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).

Fei, N. et al. Towards artificial general intelligence via a multimodal foundation model. Nat. Commun. 13, 3094 (2022).

Article 

Google Scholar
 

Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

Article 

Google Scholar
 

Zhang, C. et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks. In Proc. 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 161–170 (2015).

Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

Article 

Google Scholar
 

Horowitz, M. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (Association for Computing Machinery, 2014).

Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).

Article 

Google Scholar
 

Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).

Article 

Google Scholar
 

Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

Article 

Google Scholar
 

Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

Article 

Google Scholar
 

Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

Article 

Google Scholar
 

Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

Article 

Google Scholar
 

Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

Article 
MathSciNet 

Google Scholar
 

Miscuglio, M. et al. Massively parallel amplitude-only Fourier neural network. Optica 7, 1812–1819 (2020).

Article 

Google Scholar
 

Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon 15, 367–373 (2021).

Article 

Google Scholar
 

Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

Article 

Google Scholar
 

Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

Article 

Google Scholar
 

Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

Article 

Google Scholar
 

Xu, S., Wang, J., Yi, S. & Zou, W. High-order tensor flow processing using integrated photonic circuits. Nat. Commun. 13, 7970 (2022).

Article 

Google Scholar
 

Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).

Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

Article 

Google Scholar
 

Larger, L. et al. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. 7, 011015 (2017).

Article 

Google Scholar
 

Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013).

Article 

Google Scholar
 

Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).

Article 

Google Scholar
 

Huang, C. et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).

Article 

Google Scholar
 

Yan, T. et al. Nanowatt all-optical 3D perception for mobile robotics. Sci. Adv. 10, eadn2031 (2024).

Article 

Google Scholar
 

Fang, L. et al. Engram-driven videography. Engineering 25, 101–109 (2023).

Article 

Google Scholar
 

Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019).

Article 

Google Scholar
 

Yan, T. et al. Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123, 023901 (2019).

Article 

Google Scholar
 

Xia, F. et al. Nonlinear optical encoding enabled by recurrent linear scattering. Nat. Photon. 18, 1067–1075 (2024).

Article 

Google Scholar
 

Wanjura, C. C. & Marquardt, F. Fully nonlinear neuromorphic computing with linear wave scattering. Nat. Phys. 20, 1434–1440 (2024).

Article 

Google Scholar
 

Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019).

Article 

Google Scholar
 

Jha, A., Huang, C. & Prucnal, P. R. Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics. Opt. Lett. 45, 4819–4822 (2020).

Article 

Google Scholar
 

Yu, W., Zheng, S., Zhao, Z., Wang, B. & Zhang, W. Reconfigurable low-threshold all-optical nonlinear activation functions based on an add-drop silicon microring resonator. IEEE Photonics J. 14, 1–7 (2022).


Google Scholar
 

Bai, B. et al. Microcomb-based integrated photonic processing unit. Nat. Commun. 14, 66 (2023).

Article 

Google Scholar
 

Heebner, J. E., Wong, V., Schweinsberg, A., Boyd, R. W. & Jackson, D. J. Optical transmission characteristics of fiber ring resonators. IEEE J. Quantum Electron. 40, 726–730 (2004).

Article 

Google Scholar
 

Chen, S., Zhang, L., Fei, Y. & Cao, T. Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects. Opt. Express 20, 7454–7468 (2012).

Article 

Google Scholar
 

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

Article 

Google Scholar
 

Zhu, W. et al. Human motion generation: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 46, 2430–2449 (2023).

Article 

Google Scholar
 

Bandyopadhyay, S. et al. Single-chip photonic deep neural network with forward-only training. Nat. Photon. 18, 1335–1343 (2024).

Article 

Google Scholar
 

Hua, S. et al. An integrated large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).

Article 

Google Scholar
 

Ahmed, S. R. et al. Universal photonic artificial intelligence acceleration. Nature 640, 368–374 (2025).

Article 

Google Scholar
 

Wang, X. et al. The group interaction field for learning and explaining pedestrian anticipation. Engineering 34, 70–82 (2024).

Article 

Google Scholar
 

Koch, C. & Segev, I. The role of single neurons in information processing. Nat. Neurosci. 3, 1171–1177 (2000).

Article 

Google Scholar
 

Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

Article 

Google Scholar
 

Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

Article 

Google Scholar
 

Hamerly, R., Bandyopadhyay, S. & Englund, D. Accurate self-configuration of rectangular multiport interferometers. Phys. Rev. Appl. 18, 024019 (2022).

Article 

Google Scholar
 

Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).

Article 

Google Scholar
 

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).

Article 

Google Scholar
 

Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

Article 

Google Scholar
 

Xue, Z. et al. Fully forward mode training for optical neural networks. Nature 632, 280–286 (2024).

Article 

Google Scholar
 

Trabelsi, C. et al. Deep complex networks. Preprint at https://doi.org/10.48550/arXiv.1705.09792 (2017).

Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021).

Article 

Google Scholar
 

Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/1708.07747 (2017).

Orchard, G., Jayawant, A., Cohen, G. K. & Thakor, N. Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015).

Article 

Google Scholar
 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

Article 

Google Scholar
 

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 30, 6627–6638 (2017).


Google Scholar
 

Bińkowski, M., Sutherland, D. J., Arbel, M. & Gretton, A. Demystifying MMD GANs. Preprint at https://doi.org/10.48550/arXiv.1801.01401 (2018).

Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).

Article 

Google Scholar
 

Zhao, P. et al. Ultra-broadband optical amplification using nonlinear integrated waveguides. Nature 640, 918–923 (2025).

Article 

Google Scholar
 

Dong, B. et al. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photon. 17, 1080–1088 (2023).

Article 

Google Scholar
 

Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).

Article 

Google Scholar
 

Yan, T. Code for a complete photonic integrated neuron (PIN). Zenodo https://doi.org/10.5281/zenodo.14975352 (2025).