Skoraczyński, G. et al. Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient? Sci. Rep. 7, 3582 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Saebi, M. et al. On the use of real-world datasets for reaction yield prediction. Chem. Sci. 14, 4997–5005 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Z., Moroz, Y. S. & Isayev, O. The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions. Chem. Sci. 14, 10835–10846 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Szymkuć, S., Wołos, A., Roszak, R. & Grzybowski, B. A. Estimation of multicomponent reactions’ yields from networks of mechanistic steps. Nat. Commun. 15, 10286 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Restrepo, G. Spaces of mathematical chemistry. Theory Biosci. 143, 237–251 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Granda, J. M., Donina, L., Dragone, V., Long, D. L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lin, S. et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 361, eaar6236 (2018).

Article 
PubMed 

Google Scholar
 

Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Angello, N. H. et al. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 378, 399–405 (2022).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Rohrbach, S. et al. Digitization and validation of a chemical synthesis literature database in the ChemPU. Science 377, 172–180 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Slattery, A. et al. Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science 383, eadj1817 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Dai, T. et al. Autonomous mobile robots for exploratory synthetic chemistry. Nature 635, 890–897 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Davies, I. W. The digitization of organic synthesis. Nature 570, 175–181 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wilbraham, L., Mehr, S. H. M. & Cronin, L. Digitizing chemistry using the chemical processing unit: from synthesis to discovery. Acc. Chem. Res. 54, 253–262 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Mahjour, B. et al. Rapid planning and analysis of high-throughput experiment arrays for reaction discovery. Nat. Commun. 14, 3924 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, J. Y. et al. Identifying general reaction conditions by bandit optimization. Nature 626, 1025–1033 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Strieth-Kalthoff, F. et al. Artificial intelligence for retrosynthetic planning needs both data and expert knowledge. J. Am. Chem. Soc. 146, 11005–11017 (2024).

CAS 

Google Scholar
 

Stadler, E. et al. A versatile method for the determination of photochemical quantum yields via online UV-Vis spectroscopy. Photochem. Photobiol. Sci. 17, 660–669 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Lu, J.-M. et al. Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day. Nat. Commun. 15, 8826 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bioucas-Dias, J. M. et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 354–379 (2012).

Article 
ADS 

Google Scholar
 

Banert, K. & Kurnianto, A. Nucleophile substitution bei 4,4-dimethyl-2-adamantyl-substraten: rückseitenangriff bei 2-adamantan-derivaten. Chem. Ber. 119, 3826–3841 (1986).

Article 
CAS 

Google Scholar
 

Thibblin, A. & Sidhu, H. Mechanisms of competing solvolytic elimination and substitution reactions. The role of ion-pair intermediates in aqueous solvents. J. Chem. Soc., Perkin Trans. 2 2, 1423–1428 (1994).

Article 

Google Scholar
 

Clennan, E. L. Aromatic endoperoxides. Photochem. Photobiol. 99, 204–220 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Klaper, M., Wessig, P. & Linker, T. Base catalysed decomposition of anthracene endoperoxide. Chem. Commun. 52, 1210–1213 (2016).

Article 
CAS 

Google Scholar
 

Ammer, J., Sailer, C. F., Riedle, E. & Mayr, H. Photolytic generation of benzhydryl cations and radicals from quaternary phosphonium salts: how highly reactive carbocations survive their first nanoseconds. J. Am. Chem. Soc. 134, 11481–11494 (2012).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Nishimae, Y., Kurata, H. & Oda, M. Arylbis(9-anthryl)methyl cations: highly crowded, near infrared light absorbing hydrocarbon cations. Angew. Chem. Int. Ed. 43, 4947–4950 (2004).

Article 
CAS 

Google Scholar
 

Nojima, M., Takagi, M., Morinaga, M., Nagao, G. & Tokura, N. Reaction of some triarylmethyl radicals, polyarylalkenes, and 9,10-dihydro-9,10-epidioxyanthracenes with sulphur dioxide; detection of radicals and/or cations derived from the corresponding cation radicals. J. Chem. Soc. Perkin Trans. 1 5, 488–495 (1978).

Article 

Google Scholar
 

Hollenstein, S. & Laali, K. K. Efficient conversion of 9-isopropenylphenanthrene to 4,6,6-trimethyl-6H-benz[de]anthracene in FSO3H; 5,6-dihydro-4H-benzanthracen-4-ium ion and its charge delocalization mode. Chem. Commun. 2145–2146 (1997).

Cankařová, N., Nemec, I. & Krchňák, V. p-TSA-mediated four-component reaction: one-step access to mesoionic 1H-imidazol-3-ium-4-olates, direct NHC precursors. Adv. Synth. Catal. 364, 2996–3003 (2022).

Article 

Google Scholar
 

Medeiros, G. A. et al. Probing the mechanism of the Ugi four-component reaction with charge-tagged reagents by ESI-MS(/MS). Chem. Commun. 50, 338–340 (2014).

Article 
CAS 

Google Scholar
 

Rocha, R. O., Rodrigues, M. O. & Neto, B. A. D. Review on the Ugi multicomponent reaction mechanism and the use of fluorescent derivatives as functional chromophores. ACS Omega 5, 972–979 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alvim, H. G. O., da Silva Júnior, E. N. & Neto, B. A. D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Adv. 4, 54282–54299 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Chéron, N., Ramozzi, R., Kaïm, L. E., Grimaud, L. & Fleurat-Lessard, P. Challenging 50 years of established views on Ugi reaction: a theoretical approach. J. Org. Chem. 77, 1361–1366 (2012).

Article 
PubMed 

Google Scholar
 

Hantzsch, A. Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen. Ber. Dtsch. Chem. Ges. 14, 1637–1638 (1881).

Article 

Google Scholar
 

Shen, L. et al. A revisit to the Hantzsch reaction: unexpected products beyond 1,4-dihydropyridines. Green Chem. 11, 1414–1420 (2009).

Article 
CAS 

Google Scholar
 

Santos, V. G. et al. The multicomponent Hantzsch reaction: comprehensive mass spectrometry monitoring using charge-tagged reagents. Chem. Eur. J. 20, 12808–12816 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Chang, C.-C. et al. Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent L-type Ca2+ channels CaV1.3 and CaV1.2. Bioorg. Med. Chem. 18, 3147–3158 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Petrenko-Kritschenko, P. Über die kondensation des acetondicarbonsäureesters mit aldehyden, ammoniak und aminen. J. Prakt. Chem. 85, 1–37 (1912).

Article 

Google Scholar
 

Singh, B. & Indra, A. Prussian blue- and Prussian blue analogue-derived materials: progress and prospects for electrochemical energy conversion. Mater. Today Energy 16, 100404 (2020).

Article 

Google Scholar
 

Li, W. et al. Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15, 1900470 (2019).

Article 

Google Scholar
 

Choo, J. P. S. & Li, Z. Styrene oxide isomerase catalyzed Meinwald rearrangement reaction: discovery and application in single-step and one-pot cascade reactions. Org. Process Res. Dev. 26, 1960–1970 (2022).

Article 
CAS 

Google Scholar
 

Guo, S. et al. Synthesis of trimetallic Prussian blue analogues and catalytic application for the epoxidation of styrene. Ind. Eng. Chem. Res. 59, 13831–13840 (2020).

Article 
CAS 

Google Scholar
 

Liang, Y. et al. Prussian blue analogues as heterogeneous catalysts for epoxidation of styrene. RSC Adv. 5, 17993–17999 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Zhang, L., Zhang, Z., He, X., Zhang, F. & Zhang, Z. Regulation of the products of styrene oxidation. Chem. Eng. Res. Des. 120, 171–178 (2017).

Article 

Google Scholar
 

Pal, A. et al. Finding thermodynamically favorable pathways in chemical reaction networks using flows in hypergraphs and mixed-integer linear programming. J. Chem. Inf. Model. 65, 6772–6787 (2025).

Grzybowski, B. A., Bishop, K. J. M., Kowalczyk, B. & Wilmer, C. E. The ‘wired’ universe of organic chemistry. Nat. Chem. 1, 31–36 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Krzeszewski, M. et al. Computer-generated, mechanistic networks assist in assigning the outcomes of complex multicomponent reactions. J. Am. Chem. Soc. 147, 15636–15644 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mikulak-Klucznik, B., Klucznik, T., Beker, W., Moskal, M. & Grzybowski, B. A. Catalyst: curtailing the scalable supply of fentanyl by using chemical AI. Chem 10, 1319–1326 (2024).

Article 
CAS 

Google Scholar
 

Mahjour, B., Shen, Y., Liu, W. & Cernak, T. A map of the amine–carboxylic acid coupling system. Nature 580, 71–75 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Baltussen, M. G., de Jong, T. J., Duez, Q., Robinson, W. E. & Huck, W. T. S. Chemical reservoir computation in a self-organizing reaction network. Nature 631, 549–555 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wołos, A. et al. Computer-designed repurposing of chemical wastes into drugs. Nature 604, 668–676 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Halder, J. et al. Insight of solvent effect on CeO2 catalyzed oxidation of styrene with tert-butyl hydroperoxide: a combined experimental and theoretical approach. Catal. Commun. 164, 106413 (2022).

Article 
CAS 

Google Scholar
 

Jia, Y. et al. Code and raw data for ‘Robot-assisted mapping of chemical reaction hyperspaces and networks’. Zenodo https://doi.org/10.5281/zenodo.14880579 (2025).

Schroeder, W., Martin, K. & Lorensen, B. The Visualization Toolkit: An Object-oriented Approach to 3D Graphics 4th edn (Kitware, 2006).

Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

Article 
MathSciNet 

Google Scholar
 

Branch, M. A., Coleman, T. F. & Li, Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21, 1–23 (1999).

Article 
MathSciNet 

Google Scholar
 

Du, M. et al. High‐entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium‐sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 (2022).

Article 
CAS 

Google Scholar