Scherzer, O. Über einige Fehler von Elektronenlinsen. Z. Phys. 101, 593–603 (1936).

Article 
ADS 

Google Scholar
 

Rose, H. H. Historical aspects of aberration correction. J. Electron Microsc. 58, 77–85 (2009).

Article 

Google Scholar
 

Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).

Article 
ADS 

Google Scholar
 

Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506–510 (2008).

Article 
ADS 

Google Scholar
 

Maurer, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photon. Rev. 5, 81–101 (2011).

Article 
ADS 

Google Scholar
 

Grillo, V. et al. Generation of nondiffracting electron Bessel beams. Phys. Rev. X 4, 011013 (2014).


Google Scholar
 

Shiloh, R. et al. Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film. Ultramicroscopy 189, 46–53 (2018).

Article 

Google Scholar
 

Verbeeck, J. et al. Demonstration of a 2 × 2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018).

Article 

Google Scholar
 

Ribet, S. M. et al. Design of electrostatic aberration correctors for scanning transmission electron microscopy. Microsc. Microanal. 29, 1950–1960 (2023).

Article 
ADS 

Google Scholar
 

Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

Article 
ADS 

Google Scholar
 

Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

Article 
ADS 

Google Scholar
 

Vanacore, G. M. et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).

Article 
ADS 

Google Scholar
 

Vanacore, G. M. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 18, 573–579 (2019).

Article 
ADS 

Google Scholar
 

Konečná, A. & de Abajo, F. J. G. Electron beam aberration correction using optical near fields. Phys. Rev. Lett. 125, 030801 (2020).

Article 
ADS 

Google Scholar
 

Ben Hayun, A. et al. Shaping quantum photonic states using free electrons. Sci. Adv. 7, eabe4270 (2021).

Article 
ADS 

Google Scholar
 

Shiloh, R. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature 597, 498–502 (2021).

Article 
ADS 

Google Scholar
 

Henke, J.-W. et al. Integrated photonics enables continuous-beam electron phase modulation. Nature 600, 653–658 (2021).

Article 
ADS 

Google Scholar
 

Dahan, R. et al. Imprinting the quantum statistics of photons on free electrons. Science 373, eabj7128 (2021).

Article 

Google Scholar
 

Feist, A. et al. Cavity-mediated electron-photon pairs. Science 377, 777–780 (2022).

Article 
ADS 

Google Scholar
 

Madan, I. et al. Ultrafast transverse modulation of free electrons by interaction with shaped optical fields. ACS Photon. 9, 3215–3224 (2022).

Article 

Google Scholar
 

Tsesses, S. et al. Tunable photon-induced spatial modulation of free electrons. Nat. Mater. 22, 345–352 (2023).

Article 
ADS 

Google Scholar
 

García de Abajo, F. J. & Ropers, C. Spatiotemporal electron beam focusing through parallel interactions with shaped optical fields. Phys. Rev. Lett. 130, 246901 (2023).

Article 
ADS 

Google Scholar
 

Gaida, J. H. et al. Lorentz microscopy of optical fields. Nat. Commun. 14, 6545 (2023).

Article 
ADS 

Google Scholar
 

Synanidis, A. P., Gonçalves, P., Ropers, C. & de Abajo, F. J. G. Quantum effects in the interaction of low-energy electrons with light. Sci. Adv. 10, eadp4096 (2024).

Article 

Google Scholar
 

Fang, Y., Kuttruff, J., Nabben, D. & Baum, P. Structured electrons with chiral mass and charge. Science 385, 183–187 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Ferrari, B. M. et al. Realization of a pre-sample photonic-based free-electron modulator in ultrafast transmission electron microscopes. Preprint at https://arxiv.org/abs/2503.11313 (2025).

Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001).

Article 
ADS 

Google Scholar
 

Freimund, D. L. & Batelaan, H. Bragg scattering of free electrons using the Kapitza-Dirac effect. Phys. Rev. Lett. 89, 283602 (2002).

Article 
ADS 

Google Scholar
 

Hebeisen, C. T. et al. Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses. Opt. Express 16, 3334–3341 (2008).

Article 
ADS 

Google Scholar
 

Kozák, M., Eckstein, T., Schönenberger, N. & Hommelhoff, P. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. 14, 121–125 (2018).

Article 

Google Scholar
 

Kozák, M., Schönenberger, N. & Hommelhoff, P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120, 103203 (2018).

Article 
ADS 

Google Scholar
 

Schwartz, O. et al. Laser phase plate for transmission electron microscopy. Nat. Methods 16, 1016–1020 (2019).

Article 

Google Scholar
 

Axelrod, J. J. et al. Observation of the relativistic reversal of the ponderomotive potential. Phys. Rev. Lett. 124, 174801 (2020).

Article 
ADS 

Google Scholar
 

Tsarev, M., Thurner, J. W. & Baum, P. Nonlinear-optical quantum control of free-electron matter waves. Nat. Phys. 19, 1350–1354 (2023).

Article 

Google Scholar
 

Lin, K. et al. Ultrafast Kapitza-Dirac effect. Science 383, 1467–1470 (2024).

Article 
ADS 

Google Scholar
 

Velasco, C. I. & García de Abajo, F. J. Free-space optical modulation of free electrons in the continuous-wave regime. Phys. Rev. Lett. 134, 123804 (2025).

Article 
ADS 

Google Scholar
 

de Abajo, F. J. G. & Konečná, A. Optical modulation of electron beams in free space. Phys. Rev. Lett. 126, 123901 (2021).

Article 
ADS 

Google Scholar
 

Chirita Mihaila, M. C. et al. Transverse electron-beam shaping with light. Phys. Rev. X 12, 031043 (2022).


Google Scholar
 

Uesugi, Y., Kozawa, Y. & Sato, S. Electron round lenses with negative spherical aberration by a tightly focused cylindrically polarized light beam. Phys. Rev. Appl. 16, L011002 (2021).

Article 
ADS 

Google Scholar
 

Uesugi, Y., Kozawa, Y. & Sato, S. Properties of electron lenses produced by ponderomotive potential with Bessel and Laguerre–Gaussian beams. J. Opt. 24, 054013 (2022).

Article 
ADS 

Google Scholar
 

Mihaila, M. C. C. & Kozák, M. Design for light-based spherical aberration correction of ultrafast electron microscopes. Opt. Express 33, 758–775 (2025).

Article 
ADS 

Google Scholar
 

Mihaila, M. C. C., Laštovičková Streshkova, N. & Kozák, M. Light-based chromatic aberration correction of ultrafast electron microscopes. Phys. Rev. Lett. 134, 203802 (2025).

Article 
ADS 

Google Scholar
 

Nekula, Z., Juffmann, T. & Konečná, A. Laser-based aberration corrector. Preprint at https://arxiv.org/abs/2501.16501 (2025).

Guo, Z. et al. Spatiotemporal correction of ultrashort electron beam with radially polarized laser. Nucl. Instrum. Methods Phys. Res. A 1076, 170455 (2025).

Uesugi, Y. & Kozawa, Y. Crossed ponderomotive lenses for spherical aberration correction in electron optics. Phys. Rev. A 112, 013507 (2025).

Article 
ADS 

Google Scholar
 

Saxton, W. A new way of measuring microscope aberrations. Ultramicroscopy 81, 41–45 (2000).

Article 

Google Scholar
 

Cowley, J. Adjustment of a stem instrument by use of shadow images. Ultramicroscopy 4, 413–418 (1979).

Article 

Google Scholar
 

Rempfer, G. F., Desloge, D. M., Skoczylas, W. P. & Griffith, O. H. Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat. Microsc. Microanal. 3, 14–27 (1997).

Article 
ADS 

Google Scholar
 

Axelrod, J. J., Zhang, J. T., Petrov, P. N., Glaeser, R. M. & Müller, H. Modern approaches to improving phase contrast electron microscopy. Curr. Opin. Struct. Biol. 86, 102805 (2024).

Article 

Google Scholar
 

Platt, B. C. & Shack, R. History and Principles of Shack-Hartmann Wavefront Sensing (Wiley, 2001).

Koutenský, P. et al. Ultrafast 4D scanning transmission electron microscopy for imaging of localized optical fields. ACS Photon. 12, 4452–4459 (2025).

Bhat, P., Curless, B., Cohen, M. & Zitnick, C. L. Fourier analysis of the 2D screened Poisson equation for gradient domain problems. In Proc. 10th European Conference on Computer Vision (ECCV 2008) 114–128 (Springer, 2008).

Dellby, N., Krivanek, L., Nellist, D., Batson, E. & Lupini, R. Progress in aberration-corrected scanning transmission electron microscopy. Microscopy 50, 177–185 (2001).

Article 

Google Scholar
 

Sawada, H., Sasaki, T., Hosokawa, F. & Suenaga, K. Atomic-resolution stem imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle. Phys. Rev. Lett. 114, 166102 (2015).

Article 
ADS 

Google Scholar
 

Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

Article 
ADS 

Google Scholar
 

Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).

Article 

Google Scholar
 

Moriová, K., Koutenský, P., Chirita-Mihaila, M.-C. & Kozák, M. Temporal characterization of femtosecond electron pulses inside ultrafast scanning electron microscope. Rev. Sci. Instrum. 96, 063706 (2025).

Chirita Mihaila, M. C., Koutenský, P., Moriová, K. & Kozák, M. Data for ‘Light-based electron aberration corrector’. Zenodo https://doi.org/10.5281/zenodo.16532408 (2025).