Scherzer, O. Über einige Fehler von Elektronenlinsen. Z. Phys. 101, 593–603 (1936).
Rose, H. H. Historical aspects of aberration correction. J. Electron Microsc. 58, 77–85 (2009).
Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).
Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506–510 (2008).
Maurer, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photon. Rev. 5, 81–101 (2011).
Grillo, V. et al. Generation of nondiffracting electron Bessel beams. Phys. Rev. X 4, 011013 (2014).
Shiloh, R. et al. Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film. Ultramicroscopy 189, 46–53 (2018).
Verbeeck, J. et al. Demonstration of a 2 × 2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018).
Ribet, S. M. et al. Design of electrostatic aberration correctors for scanning transmission electron microscopy. Microsc. Microanal. 29, 1950–1960 (2023).
Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).
Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).
Vanacore, G. M. et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).
Vanacore, G. M. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 18, 573–579 (2019).
Konečná, A. & de Abajo, F. J. G. Electron beam aberration correction using optical near fields. Phys. Rev. Lett. 125, 030801 (2020).
Ben Hayun, A. et al. Shaping quantum photonic states using free electrons. Sci. Adv. 7, eabe4270 (2021).
Shiloh, R. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature 597, 498–502 (2021).
Henke, J.-W. et al. Integrated photonics enables continuous-beam electron phase modulation. Nature 600, 653–658 (2021).
Dahan, R. et al. Imprinting the quantum statistics of photons on free electrons. Science 373, eabj7128 (2021).
Feist, A. et al. Cavity-mediated electron-photon pairs. Science 377, 777–780 (2022).
Madan, I. et al. Ultrafast transverse modulation of free electrons by interaction with shaped optical fields. ACS Photon. 9, 3215–3224 (2022).
Tsesses, S. et al. Tunable photon-induced spatial modulation of free electrons. Nat. Mater. 22, 345–352 (2023).
García de Abajo, F. J. & Ropers, C. Spatiotemporal electron beam focusing through parallel interactions with shaped optical fields. Phys. Rev. Lett. 130, 246901 (2023).
Gaida, J. H. et al. Lorentz microscopy of optical fields. Nat. Commun. 14, 6545 (2023).
Synanidis, A. P., Gonçalves, P., Ropers, C. & de Abajo, F. J. G. Quantum effects in the interaction of low-energy electrons with light. Sci. Adv. 10, eadp4096 (2024).
Fang, Y., Kuttruff, J., Nabben, D. & Baum, P. Structured electrons with chiral mass and charge. Science 385, 183–187 (2024).
Ferrari, B. M. et al. Realization of a pre-sample photonic-based free-electron modulator in ultrafast transmission electron microscopes. Preprint at https://arxiv.org/abs/2503.11313 (2025).
Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001).
Freimund, D. L. & Batelaan, H. Bragg scattering of free electrons using the Kapitza-Dirac effect. Phys. Rev. Lett. 89, 283602 (2002).
Hebeisen, C. T. et al. Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses. Opt. Express 16, 3334–3341 (2008).
Kozák, M., Eckstein, T., Schönenberger, N. & Hommelhoff, P. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. 14, 121–125 (2018).
Kozák, M., Schönenberger, N. & Hommelhoff, P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120, 103203 (2018).
Schwartz, O. et al. Laser phase plate for transmission electron microscopy. Nat. Methods 16, 1016–1020 (2019).
Axelrod, J. J. et al. Observation of the relativistic reversal of the ponderomotive potential. Phys. Rev. Lett. 124, 174801 (2020).
Tsarev, M., Thurner, J. W. & Baum, P. Nonlinear-optical quantum control of free-electron matter waves. Nat. Phys. 19, 1350–1354 (2023).
Lin, K. et al. Ultrafast Kapitza-Dirac effect. Science 383, 1467–1470 (2024).
Velasco, C. I. & García de Abajo, F. J. Free-space optical modulation of free electrons in the continuous-wave regime. Phys. Rev. Lett. 134, 123804 (2025).
de Abajo, F. J. G. & Konečná, A. Optical modulation of electron beams in free space. Phys. Rev. Lett. 126, 123901 (2021).
Chirita Mihaila, M. C. et al. Transverse electron-beam shaping with light. Phys. Rev. X 12, 031043 (2022).
Uesugi, Y., Kozawa, Y. & Sato, S. Electron round lenses with negative spherical aberration by a tightly focused cylindrically polarized light beam. Phys. Rev. Appl. 16, L011002 (2021).
Uesugi, Y., Kozawa, Y. & Sato, S. Properties of electron lenses produced by ponderomotive potential with Bessel and Laguerre–Gaussian beams. J. Opt. 24, 054013 (2022).
Mihaila, M. C. C. & Kozák, M. Design for light-based spherical aberration correction of ultrafast electron microscopes. Opt. Express 33, 758–775 (2025).
Mihaila, M. C. C., Laštovičková Streshkova, N. & Kozák, M. Light-based chromatic aberration correction of ultrafast electron microscopes. Phys. Rev. Lett. 134, 203802 (2025).
Nekula, Z., Juffmann, T. & Konečná, A. Laser-based aberration corrector. Preprint at https://arxiv.org/abs/2501.16501 (2025).
Guo, Z. et al. Spatiotemporal correction of ultrashort electron beam with radially polarized laser. Nucl. Instrum. Methods Phys. Res. A 1076, 170455 (2025).
Uesugi, Y. & Kozawa, Y. Crossed ponderomotive lenses for spherical aberration correction in electron optics. Phys. Rev. A 112, 013507 (2025).
Saxton, W. A new way of measuring microscope aberrations. Ultramicroscopy 81, 41–45 (2000).
Cowley, J. Adjustment of a stem instrument by use of shadow images. Ultramicroscopy 4, 413–418 (1979).
Rempfer, G. F., Desloge, D. M., Skoczylas, W. P. & Griffith, O. H. Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat. Microsc. Microanal. 3, 14–27 (1997).
Axelrod, J. J., Zhang, J. T., Petrov, P. N., Glaeser, R. M. & Müller, H. Modern approaches to improving phase contrast electron microscopy. Curr. Opin. Struct. Biol. 86, 102805 (2024).
Platt, B. C. & Shack, R. History and Principles of Shack-Hartmann Wavefront Sensing (Wiley, 2001).
Koutenský, P. et al. Ultrafast 4D scanning transmission electron microscopy for imaging of localized optical fields. ACS Photon. 12, 4452–4459 (2025).
Bhat, P., Curless, B., Cohen, M. & Zitnick, C. L. Fourier analysis of the 2D screened Poisson equation for gradient domain problems. In Proc. 10th European Conference on Computer Vision (ECCV 2008) 114–128 (Springer, 2008).
Dellby, N., Krivanek, L., Nellist, D., Batson, E. & Lupini, R. Progress in aberration-corrected scanning transmission electron microscopy. Microscopy 50, 177–185 (2001).
Sawada, H., Sasaki, T., Hosokawa, F. & Suenaga, K. Atomic-resolution stem imaging of graphene at low voltage of 30 kV with resolution enhancement by using large convergence angle. Phys. Rev. Lett. 114, 166102 (2015).
Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).
Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).
Moriová, K., Koutenský, P., Chirita-Mihaila, M.-C. & Kozák, M. Temporal characterization of femtosecond electron pulses inside ultrafast scanning electron microscope. Rev. Sci. Instrum. 96, 063706 (2025).
Chirita Mihaila, M. C., Koutenský, P., Moriová, K. & Kozák, M. Data for ‘Light-based electron aberration corrector’. Zenodo https://doi.org/10.5281/zenodo.16532408 (2025).