Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Li, M. et al. High-entropy alloy electrocatalysts go to (sub-) nanoscale. Sci. Adv. 10, eadn2877 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gao, S. et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 11, 2016 (2020).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Wang, B. et al. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nat. Synth. 1, 138–146 (2022).

Article 
ADS 

Google Scholar
 

Chen, P.-C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Sun, Y. & Dai, S. High-entropy materials for catalysis: a new frontier. Sci. Adv. 7, eabg1600 (2021).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Yao, Y. et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery. Science 376, eabn3103 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Xin, Y. et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306 (2020).

Article 
CAS 

Google Scholar
 

Liu, Y.-H. et al. Toward controllable and predictable synthesis of high-entropy alloy nanocrystals. Sci. Adv. 9, eadf9931 (2023).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Ouyang, B. & Zeng, Y. The rise of high-entropy battery materials. Nat. Commun. 15, 973 (2024).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium-and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Kang, Y. et al. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat. Commun. 14, 4182 (2023).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Zhan, C. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Li, Y. et al. Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nat. Commun. 14, 3171 (2023).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332–335 (2017).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Idrus-Saidi, S. A. et al. Liquid metal synthesis solvents for metallic crystals. Science 378, 1118–1124 (2022).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Hong, S.-J. & Suryanarayana, C. Mechanism of low-temperature θ-CuGa2 phase formation in Cu-Ga alloys by mechanical alloying. J. Appl. Phys. 96, 6120–6126 (2004).

Article 
CAS 
ADS 

Google Scholar
 

Brandes, E. A. & Brook, G. Smithells Metals Reference Book (Elsevier, 2013).

Dean, J. A. Lange’s Handbook of Chemistry (McGraw-Hill, Inc., 1999).

Yao, Y. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 6, eaaz0510 (2020).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Chang, X., Zeng, M., Liu, K. & Fu, L. Phase engineering of high‐entropy alloys. Adv. Mater. 32, 1907226 (2020).

Article 
CAS 

Google Scholar
 

Young, D. A. Phase Diagrams of the Elements (Univ. California Press, 2023).

Gan, T., Handschuh-Wang, S., Shang, W. & Zhou, X. GaOOH crystallite growth on liquid metal microdroplets in water: influence of the local environment. Langmuir 38, 14475–14484 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Turnbull, D. Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20, 411–424 (1952).

Article 
CAS 
ADS 

Google Scholar
 

Kalikmanov, V. I. Nucleation Theory (Springer, 2013).

Takeuchi, A. & Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005).

Article 
CAS 

Google Scholar
 

Tandoc, C., Hu, Y.-J., Qi, L. & Liaw, P. K. Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys. npj Comput. Mater. 9, 53 (2023).

Article 
CAS 
ADS 

Google Scholar
 

Khalajzadeh, V. & Beckermann, C. Simulation of shrinkage porosity formation during alloy solidification. Metall. Mater. Trans. A 51, 2239–2254 (2020).

Article 
CAS 

Google Scholar
 

Gránásy, L., Pusztai, T., Börzsönyi, T., Warren, J. A. & Douglas, J. F. A general mechanism of polycrystalline growth. Nat. Mater. 3, 645–650 (2004).

Article 
PubMed 
ADS 

Google Scholar
 

Yamaguchi, A., Mashima, Y. & Iyoda, T. Reversible size control of liquid‐metal nanoparticles under ultrasonication. Angew. Chem. Int. Ed. 54, 12809–12813 (2015).

Article 
CAS 

Google Scholar
 

Yu, Q. et al. Identifying surface structural changes in a newly-developed Ga-based alloy with melting temperature below 10 °C. Appl. Surf. Sci. 492, 143–149 (2019).

Article 
CAS 
ADS 

Google Scholar