Holliday, R. A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304 (1964).

Article 

Google Scholar
 

Schwacha, A. & Kleckner, N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791 (1995).

Article 
CAS 
PubMed 

Google Scholar
 

Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Zickler, D. & Kleckner, N. Meiosis: dances between homologs. Ann. Rev. Genet. 57, 1–63 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Ur, S. N. & Corbett, K. D. Architecture and dynamics of meiotic chromosomes. Ann. Rev. Genet. 55, 497–526 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Voelkel-Meiman, K., Moustafa, S. S., Lefrançois, P., Villeneuve, A. M. & MacQueen, A. J. Full-length synaptonemal complex grows continuously during meiotic prophase in budding yeast. PLoS Genet. 8, e1002993 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rog, O., Köhler, S. & Dernburg, A. F. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 6, 4482 (2017).

Article 

Google Scholar
 

Pattabiraman, D., Roelens, B., Woglar, A. & Villeneuve, A. M. Meiotic recombination modulates the structure and dynamics of the synaptonemal complex during C. elegans meiosis. PLoS Genet. 13, e1006670 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nadarajan, S. et al. Polo-like kinase-dependent phosphorylation of the synaptonemal complex protein SYP-4 regulates double-strand break formation through a negative feedback loop. eLife 6, e23437 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Z. et al. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J. Cell Biol. 219, e201910086 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Padmore, R., Cao, L. & Kleckner, N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66, 1239–1256 (1991).

Article 
CAS 
PubMed 

Google Scholar
 

Henderson, K. A. & Keeney, S. Synaptonemal complex formation: where does it start? BioEssays 27, 995–998 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Börner, G. V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

Article 
PubMed 

Google Scholar
 

Fung, J. C., Rockmill, B., Odell, M. & Roeder, G. S. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Chua, P. R. & Roeder, G. S. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93, 349–359 (1998).

Article 
CAS 
PubMed 

Google Scholar
 

Agarwal, S. & Roeder, G. S. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102, 245–255 (2000).

Article 
CAS 
PubMed 

Google Scholar
 

Novak, J. E., Ross-Macdonald, P. B. & Roeder, G. S. The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158, 1013–1025 (2001).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsubouchi, T., Zhao, H. & Roeder, G. S. The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev. Cell 10, 809–819 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Muyt, A. D. et al. A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes Dev. 32, 283–296 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arora, K. & Corbett, K. D. The conserved XPF:ERCC1-like Zip2:Spo16 complex controls meiotic crossover formation through structure-specific DNA binding. Nucleic Acids Res. 47, 2365–2376 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Pyatnitskaya, A., Andreani, J., Guérois, R., Muyt, A. D. & Borde, V. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes Dev. 36, 53–69 (2021).

Pyatnitskaya, A., Borde, V. & Muyt, A. D. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 128, 181–198 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Wojtasz, L. et al. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 5, e1000702 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thacker, D., Mohibullah, N., Zhu, X. & Keeney, S. Homologue engagement controls meiotic DNA break number and distribution. Nature 510, 241–246 (2014).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Subramanian, V. V. et al. Chromosome synapsis alleviates Mek1-dependent suppression of meiotic DNA repair. PLoS Biol. 14, e1002369 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Voelkel-Meiman, K., Cheng, S.-Y., Morehouse, S. J. & MacQueen, A. J. Synaptonemal complex proteins of budding yeast define reciprocal roles in MutSγ-mediated crossover formation. Genetics 203, 1091–1103 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mu, X., Murakami, H., Mohibullah, N. & Keeney, S. Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes Dev. 34, 1605–1618 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, M.-S. et al. The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Res. 49, 7537–7553 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, L., Ajimura, M., Padmore, R., Klein, C. & Kleckner, N. NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 6572–6581 (1995).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Clyne, R. K. et al. Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat. Cell Biol. 5, 480–485 (2003).

Article 
CAS 
PubMed 

Google Scholar
 

Sourirajan, A. & Lichten, M. Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev. 22, 2627–2632 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matos, J., Blanco, M. G., Maslen, S., Skehel, J. M. & West, S. C. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147, 158–172 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Blanco, M. G., Matos, J. & West, S. C. Dual control of Yen1 nuclease activity and cellular localization by Cdk and Cdc14 prevents genome instability. Mol. Cell 54, 94–106 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arter, M. et al. Regulated crossing-over requires inactivation of Yen1/GEN1 resolvase during meiotic prophase I. Dev. Cell 45, 785–800 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sym, M. & Roeder, G. S. Zip1-induced changes in synaptonemal complex structure and polycomplex assembly. J. Cell Biol. 128, 455–466 (1995).

Article 
CAS 
PubMed 

Google Scholar
 

Humphryes, N. et al. The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLoS Genet. 9, e1003194 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Voelkel-Meiman, K. et al. SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet. 9, e1003837 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yu, H.-G. & Koshland, D. Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Cell 123, 397–407 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Prieler, S. et al. Spo11 generates gaps through concerted cuts at sites of topological stress. Nature 594, 577–582 (2021).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Jessop, L., Rockmill, B., Roeder, G. S. & Lichten, M. Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of Sgs1. PLoS Genet. 2, e155 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, L. & Hickson, I. D. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Muyt, A. D. et al. BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism. Mol. Cell 46, 43–53 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zakharyevich, K., Tang, S., Ma, Y. & Hunter, N. Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase. Cell 149, 334–347 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Leung, W.-K. et al. The synaptonemal complex is assembled by a polySUMOylation-driven feedback mechanism in yeast. J. Cell Biol. 211, 785–793 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bermúdez-López, M. et al. Sgs1 roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev. 30, 1339–1356 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bonner, J. N. et al. Smc5/6 mediated sumoylation of the Sgs1-Top3-Rmi1 complex promotes removal of recombination intermediates. Cell Rep. 16, 368–378 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Texari, L. et al. The nuclear pore regulates GAL1 gene transcription by controlling the localization of the SUMO protease Ulp1. Mol. Cell 51, 807–818 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Carballo, J. A., Johnson, A. L., Sedgwick, S. G. & Cha, R. S. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132, 758–770 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Xu, L., Weiner, B. M. & Kleckner, N. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 11, 106–118 (1997).

Article 
CAS 
PubMed 

Google Scholar
 

Hollingsworth, N. M. & Gaglione, R. The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair. Curr. Genet. 65, 631–641 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jordan, P. W., Karppinen, J. & Handel, M. A. Polo-like kinase is required for synaptonemal complex disassembly and phosphorylation in mouse spermatocytes. J. Cell Sci. 125, 5061–5072 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Argunhan, B. et al. Fundamental cell cycle kinases collaborate to ensure timely destruction of the synaptonemal complex during meiosis. EMBO J. 36, 2488–2509 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tang, S. et al. Protecting double-Holliday junctions ensures crossing over during meiosis. Nature https://doi.org/10.1038/s41586-025-09555-1 (2025).

Cannavo, E. et al. Regulation of the MLH1-MLH3 endonuclease in meiosis. Nature 586, 618–622 (2020).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Kulkarni, D. S. et al. PCNA activates the MutLγ endonuclease to promote meiotic crossing over. Nature 586, 623–627 (2020).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Dernburg, A. F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998).

Article 
CAS 
PubMed 

Google Scholar
 

McKim, K. S. et al. Meiotic synapsis in the absence of recombination. Science 279, 876–878 (1998).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Rosu, S. et al. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance. PLoS Genet. 9, e1003674 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stamper, E. L. et al. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint. PLoS Genet. 9, e1003679 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Machovina, T. S. et al. A surveillance system ensures crossover formation in C. elegans. Curr. Biol. 26, 2873–2884 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matos, J. et al. Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell 135, 662–678 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Benjamin, K. R., Zhang, C., Shokat, K. M. & Herskowitz, I. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev. 17, 1524–1539 (2003).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Haruki, H., Nishikawa, J. & Laemmli, U. K. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925–932 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

King, G. A. et al. Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization. J. Cell Biol. 222, e202204039 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Scherthan, H. et al. Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 104, 16934–16939 (2007).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Morawska, M. & Ulrich, H. D. An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast 30, 341–351 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Hentges, P., Van Driessche, B., Tafforeau, L., Vandenhaute, J. & Carr, A. M. Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22, 1013–1019 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Oelschlaegel, T. et al. The yeast APC/C subunit Mnd2 prevents premature sister chromatid separation triggered by the meiosis-specific APC/C-Ama1. Cell 120, 773–788 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Grigaitis, R., Susperregui, A., Wild, P. & Matos, J. Characterization of DNA helicases and nucleases from meiotic extracts of S. cerevisiae. Methods Cell. Biol. 144, 371–388 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Wild, P. et al. Network rewiring of homologous recombination enzymes during mitotic proliferation and meiosis. Mol. Cell 75, 859–874 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Loidl, J., Klein, F. & Engebrecht, J. In Methods in Cell Biology, Vol. 53 (ed. Berrios M.) 257–285 (Academic, 1997).

Loidl, J., Nairz, K. & Klein, F. Meiotic chromosome synapsis in a haploid yeast. Chromosoma 100, 221–228 (1991).

Article 
CAS 
PubMed 

Google Scholar
 

Grigaitis, R. et al. Phosphorylation of the RecQ helicase Sgs1/BLM controls its DNA unwinding activity during meiosis and mitosis. Dev. Cell 53, 706–723 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Bommi, J. R. et al. Meiosis-specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes Cells 24, 94–106 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Shinohara, M., Oh, S. D., Hunter, N. & Shinohara, A. Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat. Genet. 40, 299–309 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Voelkel-Meiman, K. et al. Crossover recombination and synapsis are linked by adjacent regions within the N terminus of the Zip1 synaptonemal complex protein. PLoS Genet. 15, e1008201 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Iwasaki, D. et al. The MRX complex ensures NHEJ fidelity through multiple pathways including Xrs2-FHA–dependent Tel1 activation. PLoS Genet. 12, e1005942 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

ImageJ plugin HyperStackReg v.5.6 (Zenodo, 2018).

Salah, S.-M. & Nasmyth, K. Destruction of the securin Pds1p occurs at the onset of anaphase during both meiotic divisions in yeast. Chromosoma 109, 27–34 (2000).

Article 
CAS 
PubMed 

Google Scholar
 

Martini, E., Diaz, R. L., Hunter, N. & Keeney, S. Crossover homeostasis in yeast meiosis. Cell 126, 285–295 (2006).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, K. P. et al. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924–937 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ahuja, J. S. & Borner, G. V. Analysis of meiotic recombination intermediates by two-dimensional gel electrophoresis. Methods Mol. Biol. 745, 99–116 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Owens, S., Tang, S. & Hunter, N. Monitoring recombination during meiosis in budding yeast. Methods Enzymol. 601, 275–307 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schwacha, A. & Kleckner, N. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123–1135 (1997).

Article 
CAS 
PubMed 

Google Scholar
 

Murakami, H., Borde, V., Nicolas, A. & Keeney, S. Gel electrophoresis assays for analyzing DNA double-strand breaks in Saccharomyces cerevisiae at various spatial resolutions. Methods Mol. Biol. 557, 117–142 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pan, J. et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Henggeler, A., Orlić, L., Velikov, D. & Matos, J. Data for ‘Holliday junction–ZMM protein feedback enables meiotic crossover assurance’. Zenodo https://doi.org/10.5281/zenodo.15862742 (2025).