Shekhar, S. et al. Roadmapping the next generation of silicon photonics. Nat. Commun. 15, 1–15 (2024).

Article 

Google Scholar
 

Xing, Y. et al. Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration. IEEE Photonics Technol. Lett. 27, 1269–1272 (2015).

Article 
ADS 

Google Scholar
 

Enami, Y., Luo, J. & Jen, A. K. Short hybrid polymer/sol-gel silica waveguide switches with high in-device electro-optic coefficient based on photostable chromophore. AIP Adv. 1, 042137 (2011).

Article 
ADS 

Google Scholar
 

Tahersima, M. H. et al. Coupling-enhanced dual ito layer electro-absorption modulator in silicon photonics. Nanophotonics 8, 1559–1566 (2019).

Article 
CAS 

Google Scholar
 

Sinatkas, G., Christopoulos, T., Tsilipakos, O. & Kriezis, E. E. Electro-optic modulation in integrated photonics. J. Appl. Phys. 130, 010901 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Gui, Y. et al. 100 ghz micrometer-compact broadband monolithic ito mach-zehnder interferometer modulator enabling 3500 times higher packing density. Nanophotonics 11, 4001–4009 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amin, R. et al. Sub-wavelength ghz-fast broadband ito mach-zehnder modulator on silicon photonics. Optica 7, 333–335 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Amin, R. et al. Ito-based electro-absorption modulator for photonic neural activation function. APL Mater. 7, 081112 (2019).

Article 
ADS 

Google Scholar
 

He, M. et al. High-performance hybrid silicon and lithium niobate mach-zehnder modulators for 100 gbit s-1 and beyond. Nat. Photonics 13, 359–364 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature 562, 101–104 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Abel, S. et al. A strong electro-optically active lead-free ferroelectric integrated on silicon. Nat. Commun. 4, 1671 (2013).

Article 
ADS 
PubMed 

Google Scholar
 

Eltes, F. et al. A batio 3-based electro-optic pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Light Technol. 37, 1456–1462 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Abel, S. et al. Large pockels effect in micro-and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Eltes, F. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19, 1164–1168 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Miscuglio, M., Adam, G. C., Kuzum, D. & Sorger, V. J. Roadmap on material-function mapping for photonic-electronic hybrid neural networks. APL Mater. 7, 100903 (2019).

Article 
ADS 

Google Scholar
 

Taghavi, I. et al. Polymer modulators in silicon photonics: review and projections. Nanophotonics 11, 3855–3871347 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, H. et al. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic-organic hybrid devices. Mater. Horiz. 9, 261–270 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Burla, M. et al. 500 ghz plasmonic mach-zehnder modulator enabling sub-thz microwave photonics. APL Photonics 4, 056106 (2019).

Article 
ADS 

Google Scholar
 

Alloatti, L. et al. 100 GHz silicon-organic hybrid modulator. Light Sci. Appl. 3, 173–173 (2014).

Article 

Google Scholar
 

Lu, G.-W. et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 gbits-1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun. 11, 1–9 (2020).

ADS 

Google Scholar
 

Schwarzenberger, A. et al. Cryogenic operation of a silicon-organic hybrid (soh) modulator at 50 gbit/s and 4 k ambient temperature. In: IEEE 2022 European Conference on Optical Communication (ECOC), pp. 1–6 (2022).

Habegger, P. et al. Plasmonic 100-GHz electro-optic modulators for cryogenic applications. In: European Conference and Exhibition on Optical Communication, Optica Publishing Group, pp. 1–1 (2022).

Hammond, S.R., O’Malleya, K.M., Xub, H., Elder, D.L. & Lewis, E.J. Organic electro-optic materials combining extraordinary nonlinearity with exceptional stability to enable commercial applications. In: SPIE Photonics West 11998, pp. 56–66 (2022).

Teng, C., Mortazavi, M. & Boudoughian, G. Origin of the poling-induced optical loss in a nonlinear optical polymeric waveguide. Appl. Phys. Lett. 66, 667–669 (1995).

Article 
ADS 
CAS 

Google Scholar
 

Taghavi, I. et al. Enhanced poling and infiltration for highly efficient electro-optic polymer-based mach-zehnder modulators. Opt. Express 30, 27841–27857 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Schulz, K. M. et al. Mechanism that governs the electro-optic response of second-order nonlinear polymers on silicon substrates. Opt. Mater. Express 5, 1653–1660 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Jin, W. et al. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Appl. Phys. Lett. 104, 94–1 (2014).

Article 

Google Scholar
 

Wang, C.-T. et al. Electrically tunable high q-factor micro-ring resonator based on blue phase liquid crystal cladding. Opt. Express 22, 17776–17781 (2014).

Article 
ADS 
PubMed 

Google Scholar
 

Zhang, Z., You, Z. & Chu, D. Fundamentals of phase-only liquid crystal on silicon (lcos) devices. Light Sci. Appl. 3, 213–213 (2014).

Article 

Google Scholar
 

Li, J. & Chu, D. Liquid crystal-based enclosed coplanar waveguide phase shifter for 54-66 ghz applications. Crystals 9, 650 (2019).

Article 

Google Scholar
 

Ptasinski, J., Kim, S. W., Pang, L., Khoo, I.-C. & Fainman, Y. Optical tuning of silicon photonic structures with nematic liquid crystal claddings. Opt. Lett. 38, 2008–2010 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lavrentovich, O. D. Ferroelectric nematic liquid crystal, a century in waiting. Proc. Natl. Acad. Sci. 117, 14629–14631 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, X. et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics. Proc. Natl. Acad. Sci. 117, 14021–14031 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kumari, P., Basnet, B., Wang, H. & Lavrentovich, O. D. Ferroelectric nematic liquids with conics. Nat. Commun. 14, 748 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Folcia, C. L., Ortega, J., Vidal, R., Sierra, T. & Etxebarria, J. An optimum liquid crystal candidate for nonlinear optics. Liq. Cryst. 49, 899–906 (2022).

Article 
CAS 

Google Scholar
 

Xia, R. et al. Achieving enhanced second-harmonic generation in ferroelectric nematics by doping d-π-a chromophores. J. Mater. Chem. C. 11, 10905–10910 (2023).

Article 
CAS 

Google Scholar
 

Chen, X. et al. Polar in-plane surface orientation of a ferroelectric nematic liquid crystal: polar monodomains and twisted state electro-optics. Proc. Natl Acad. Sci. 118, e2104092118 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Thomaschewski, M., Zenin, V. A., Wolff, C. & Bozhevolnyi, S. I. Plasmonic monolithic lithium niobate directional coupler switches. Nat. Commun. 11, 748 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Witmer, J. D. et al. A silicon-organic hybrid platform for quantum microwave-to-optical transduction. Quantum Sci. Technol. 5, 034004 (2020).

Article 
ADS 

Google Scholar
 

Singh, J. et al. Neuromorphic photonic circuit modeling in verilog-a. APL Photonics 7, 046103 (2022).

Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Ding, R. et al. Demonstration of a low v π l modulator with ghz bandwidth based on electro-optic polymer-clad silicon slot waveguides. Opt. Express 18, 15618–15623 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Melikyan, A. et al. High-speed plasmonic phase modulators. Nat. Photonics 138, 229–233 (2014).

Article 
ADS 

Google Scholar
 

Pan, Z. et al. High-speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator. Laser Photonics Rev. 12, 1700300 (2018).

Article 
ADS 

Google Scholar
 

Inoue, S.-i & Otomo, A. Electro-optic polymer/silicon hybrid slow light modulator based on one- dimensional photonic crystal waveguides. Appl. Phys. Lett. 103, 171101 (2013).

Article 
ADS 

Google Scholar
 

Ummethala, S. et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica 8, 511–519 (2021).

Article 
ADS 

Google Scholar
 

Heni, W. et al. Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. Opt. Express 25, 2627–2653 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Wang, G., Baehr-Jones, T., Hochberg, M. & Scherer, A. Design and fabrication of segmented, slotted waveguides for electro-optic modulation. Appl. Phys. Lett. 91, 143109 (2007).

Article 
ADS 

Google Scholar
 

Hochberg, M. et al. Segmented waveguides in thin silicon-on-insulator. J. Opt. Soc. Am. B 22, 1493–1497 (2005).

Article 
ADS 
CAS 

Google Scholar
 

Gould, M. et al. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Opt. Express 19, 3952–3961 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Xu, H. et al. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from diels-alder cross-linkable binary molecular glasses. Chem. Mater. 32, 1408–1421 (2020).

Article 
CAS 

Google Scholar
 

Elder, D. L. et al. Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores. Chem. Mater. 29, 6457–6471 (2017).

Article 
CAS 

Google Scholar
 

Witt, D., Young, J. & Chrostowski, L. Reinforcement learning for photonic component design. APL Photonics 8, 106101 (2023).

Darcie, A. et al. Siepicfab: the Canadian silicon photonics rapid-prototyping foundry for integrated optics and quantum computing. In: SPIE Silicon Photonics XVI, vol. 11691, pp. 31–50 (2021).

Wang, Y. et al. Apodized focusing fully etched subwavelength grating couplers. IEEE Photonics J. 7, 1–10 (2015).

Article 

Google Scholar
 

Chiang, L.-Y. et al. Ferroelectric nematic liquid crystal-based silicon photonic modulator demonstrated at 102 Gbit/s PAM-4. arXiv https://arxiv.org/abs/2507.14724 (2025).

Yamaguchi, Y. et al. Traveling-wave Mach-Zehnder modulator integrated with electro-optic frequency-domain equalizer for broadband modulation. J. Light. Technol. 41, 3883–3891 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Luan, E. et al. Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding. Sci. Rep. 13, 1260 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mitchell, M. et al. Photonic wire bonding for silicon photonics iii-v laser integration. In: 2021 IEEE 17th International Conference on Group IV Photonics (GFP), pp. 1–2 (2021).

Wang, T. et al. Semiconductor optical amplifier (soa) integrated on a silicon photonic chip using photonic wire bonds (pwbs). In: SPIE Integrated Optics: Devices, Materials, and Technologies XXVIII, vol. 12889, pp. 131–137 (2024).

Palmer, R. et al. High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material. J. Light. Technol. 32, 2726–2734 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Koeber, S. et al. Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light Sci. Appl. 4, 255–255 (2015).

Article 

Google Scholar
 

Taghavi, I. et al. Enhanced polling and infiltration of highly-linear Mach-Zehnder modulators on si/sin-organic hybrid platform. In: CLEO: Science and Innovations, Optical Society of America, pp. 1–1 (2018).

Brosi, J.-M. et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kamada, S. et al. Superiorly low half-wave voltage electro-optic polymer modulator for visible photonics. Opt. Express 30, 19771–19780 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, X. et al. Highly linear broadband optical modulator based on electro-optic polymer. IEEE Photonics J. 4, 2214–2228 (2012).

Article 
ADS 

Google Scholar
 

Qiu, F. et al. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators. Appl. Phys. Lett. 107, 92–1 (2015).

Article 

Google Scholar
 

Taghavi, I. GHz-rate optical phase shift in light matter interaction-engineered, silicon-ferroelectric nematic liquid crystals. Figshare. https://doi.org/10.6084/m9.figshare.29817221.v2 (2025).

Park, J. W., You, J.-B., Kim, I. G. & Kim, G. High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a pn diode. Opt. Express 17, 15520–15524 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar