Hille, B. Ion Channels of Excitable Membranes 3rd edn (Sinauer, 2001).

Jahr, C. E. & Stevens, C. F. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522–525 (1987).

Article 
ADS 
PubMed 

Google Scholar
 

Cull-Candy, S. G. & Usowicz, M. M. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, 525–528 (1987).

Article 
ADS 
PubMed 

Google Scholar
 

Schneggenburger, R. & Ascher, P. Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron 18, 167–177 (1997).

Article 
PubMed 

Google Scholar
 

Banke, T. G. & Traynelis, S. F. Activation of NR1/NR2B NMDA receptors. Nat. Neurosci. 6, 144–152 (2003).

Article 
PubMed 

Google Scholar
 

Popescu, G. & Auerbach, A. Modal gating of NMDA receptors and the shape of their synaptic response. Nat. Neurosci. 6, 476–483 (2003).

Article 
PubMed 

Google Scholar
 

Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

Article 
ADS 
PubMed 

Google Scholar
 

Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

Article 
PubMed 

Google Scholar
 

Hansen, K. B. et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73, 298–487 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Karakas, E. & Furukawa, H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997 (2014).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, C. H. et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197 (2014).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, J. X. & Furukawa, H. Dissecting diverse functions of NMDA receptors by structural biology. Curr. Opin. Struct. Biol. 54, 34–42 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mony, L. & Paoletti, P. Mechanisms of NMDA receptor regulation. Curr. Opin. Neurobiol. 83, 102815 (2023).

Article 
PubMed 

Google Scholar
 

Zhou, C. & Tajima, N. Structural insights into NMDA receptor pharmacology. Biochem. Soc. Trans. 51, 1713–1731 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, E., Zhang, J., Zhang, J. & Zhu, S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr. Opin. Neurobiol. 83, 102806 (2023).

Article 
PubMed 

Google Scholar
 

Hansen, K. B. et al. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150, 1081–1105 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Ratner, M. H., Kumaresan, V. & Farb, D. H. Neurosteroid actions in memory and neurologic/neuropsychiatric disorders. Front. Endocrinol. 10, 169 (2019).

Article 

Google Scholar
 

Hanson, J. E. et al. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 49, 51–66 (2024).

Article 
PubMed 

Google Scholar
 

Zorumski, C. F. et al. New directions in neurosteroid therapeutics in neuropsychiatry. Neurosci. Biobehav. Rev. 172, 106119 (2025).

Article 
PubMed 

Google Scholar
 

Hrcka Krausova, B. et al. Site of action of brain neurosteroid pregnenolone sulfate at the N-methyl-D-aspartate receptor. J. Neurosci. 40, 5922 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Perszyk, R. E. et al. Biased modulators of NMDA receptors control channel opening and ion selectivity. Nat. Chem. Biol. 16, 188–196 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chou, T. H. et al. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 632, 209–217 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Ullman, E. Z. et al. Mechanisms of action underlying conductance-modifying positive allosteric modulators of the NMDA receptor. Mol. Pharmacol. 106, 334–353 (2024).

Article 
PubMed 

Google Scholar
 

Paul, S. M. et al. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J. Neurosci. 33, 17290–17300 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, F. S., Gibbs, T. T. & Farb, D. H. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40, 333–336 (1991).

Article 
PubMed 

Google Scholar
 

Fritzemeier, R. G. et al. Thienopyrimidinone derivatives as a GluN2B/C/D biased, positive allosteric modulator of the N-methyl-d-aspartate receptor. J. Med. Chem. 68, 9303–9322 (2025).

Article 
PubMed 

Google Scholar
 

Premkumar, L. S., Qin, F. & Auerbach, A. Subconductance States of a mutant NMDA receptor channel kinetics, calcium, and voltage dependence. J. Gen. Physiol. 109, 181–189 (1997).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stern, P., Béhé, P., Schoepfer, R. & Colquhoun, D. Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc. R. Soc. Lond. B 250, 271–277 (1997).

ADS 

Google Scholar
 

Banke, T. G., Dravid, S. M. & Traynelis, S. F. Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J. Neurosci. 25, 42–51 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Huang, Z. & Gibb, A. J. Mg2+ block properties of triheteromeric GluN1–GluN2B–GluN2D NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 592, 2059–2078 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kang, H. et al. Structural basis for channel gating and blockade in tri-heteromeric GluN1-2B-2D NMDA receptor. Neuron https://doi.org/10.1016/j.neuron.2025.01.013 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chou, T. H., Tajima, N., Romero-Hernandez, A. & Furukawa, H. Structural basis of functional transitions in mammalian NMDA receptors. Cell 182, 357–371 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tajima, N. et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534, 63–68 (2016).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graphics 14, 354–360 (1996).

Article 

Google Scholar
 

Amin, J. B. et al. Two gates mediate NMDA receptor activity and are under subunit-specific regulation. Nat. Commun. 14, 1623 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549, 60–65 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Gangwar, S. P. et al. Kainate receptor channel opening and gating mechanism. Nature 630, 762–768 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Swanson, G. T., Kamboj, S. K. & Cull-Candy, S. G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58 (1997).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, W. et al. A transmembrane accessory subunit that modulates kainate-type glutamate receptors. Neuron 61, 385–396 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Watanabe, J., Beck, C., Kuner, T., Premkumar, L. S. & Wollmuth, L. P. DRPEER: a motif in the extracellular vestibule conferring high Ca2+ flux rates in NMDA receptor channels. J. Neurosci. 22, 10209–10216 (2002).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Perszyk, R. E. et al. Hodgkin-Huxley-Katz Prize Lecture: genetic and pharmacological control of glutamate receptor channel through a highly conserved gating motif. J. Physiol. https://doi.org/10.1113/JP278086 (2020).

Article 
PubMed 

Google Scholar
 

Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998).

Article 
ADS 
PubMed 

Google Scholar
 

Yelshanskaya, M. V., Patel, D. S., Kottke, C. M., Kurnikova, M. G. & Sobolevsky, A. I. Opening of glutamate receptor channel to subconductance levels. Nature 605, 172–178 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Coombs, I. D. & Cull-Candy, S. G. Single-channel mechanisms underlying the function, diversity and plasticity of AMPA receptors. Neuropharmacology 198, 108781 (2021).

Article 
PubMed 

Google Scholar
 

Benveniste, M. & Mayer, M. L. Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys. J. 59, 560–573 (1991).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Hale, W. D., Huganir, R. L. & Twomey, E. C. Architecture, activation, and conformational plasticity in the GluA4 AMPA receptor. Preprint at bioRxiv https://doi.org/10.1101/2025.06.12.659357 (2025).

Furukawa, H., Simorowski, N. & Michalski, K. Effective production of oligomeric membrane proteins by EarlyBac-insect cell system. Methods Enzymol. 653, 3–19 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

Article 
PubMed 

Google Scholar
 

Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015).

Article 
PubMed 

Google Scholar
 

Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

Article 
PubMed 

Google Scholar
 

Chou, T. H. et al. Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nat. Struct. Mol. Biol. 29, 507–518 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

Article 
ADS 

Google Scholar
 

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lewis, C. A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. 286, 417–445 (1979).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jatzke, C., Hernandez, M. & Wollmuth, L. P. Extracellular vestibule determinants of Ca2+ influx in Ca2+-permeable AMPA receptor channels. J. Physiol. 549, 439–452 (2003).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc.Bioinform. 2016, 5.6.1–5.6.37 (2016).


Google Scholar
 

Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950–1958 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Joung, I. S. & Cheatham, T. E. III Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

Article 
ADS 

Google Scholar
 

Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

Article 
ADS 

Google Scholar
 

Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

Article 
ADS 

Google Scholar
 

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

Article 
ADS 

Google Scholar
 

Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

Article 
ADS 

Google Scholar
Â