Coasne, B., Galarneau, A., Pellenq, J. & Renzo, F. D. Adsorption, intrusion and freezing in porous silica: the view from the nanoscale. Chem. Soc. Rev. 42, 4141 (2013).


Google Scholar
 

Shchukin, E., Pertsov, A., Amelina, E. & Zlenev, A. Colloid and Surface Chemistry Vol. 12 (Elsevier, 2001).

Ward, C. & Wu, J. Effect of adsorption on the surface tensions of solid–fluid interfaces. J. Phys. Chem. B 111, 3685–3694 (2007).


Google Scholar
 

Dupre, A. Theorie Mechanique de la Chaleur (Gauthier-Villars, 869).

Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity (Clarendon, 1982).


Google Scholar
 

Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).

ADS 
MathSciNet 

Google Scholar
 

Essafri, I., Morineau, D. & Ghoufi, A. Microphase separation of a miscible binary liquid mixture under confinement at the nanoscale. npj Comput. Mater. 5, 42 (2019).

ADS 

Google Scholar
 

Garnier, L., Szymczyk, A., Malfreyt, P. & Ghoufi, A. Physics behind water transport through nanoporous boron nitride and graphene. J. Phys. Chem. Lett. 7, 3371 (2016).


Google Scholar
 

Pereiro, U., Cors, J., Pane, S., Nelson, B. & Kaigala, G. Underpinning transport phenomena for the patterning of biomolecules. Chem. Rev. Soc. 48, 1236–1254 (2019).


Google Scholar
 

Karbowiak, T., Debeaufort, F. & Voilley, A. Importance of surface tension characterization for food, pharmaceutical and packaging products: a review. Crit. Rev. Food Sci. Nutr. 46, 391–407 (2006).


Google Scholar
 

Tariq, M. et al. Surface tension of ionic liquids and ionic liquid solutions. Chem. Soc. Rev. 41, 829–868 (2012).


Google Scholar
 

He, L., Lin, F., Li, X., Sui, H. & Xu, Z. Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chem. Soc. Rev. 44, 5466–5494 (2015).


Google Scholar
 

Cai, M., Yu, Q., Liu, W. & Zhou, F. Ionic liquid lubricants: when chemistry meets tribology. Chem. Soc. Rev. 49, 7753–7818 (2020).


Google Scholar
 

Marchand, A., Weijs, J., Snoeijer, J. & Andreotti, B. Why is surface tension a force parallel to the interface? J. Chem. Phys. 79, 999–1008 (2011).


Google Scholar
 

van Honschoten, J. W., Brunets, N. & Tas, N. R. Capillarity at the nanoscale. Chem. Soc. Rev. 39, 1096 (2010).


Google Scholar
 

Falk, K., Joly, F. S. L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano. Lett. 10, 4067 (2010).

ADS 

Google Scholar
 

Falk, K., Sedlmeier, F., Joly, L., Netz, R. & Bocquet, L. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water. Langmuir 28, 14261 (2012).


Google Scholar
 

Hamon, L. et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 131, 17490 (2009).


Google Scholar
 

Diaz, R., Orcajo, M., Botas, J., Calleja, G. & Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126 (2013).

ADS 

Google Scholar
 

Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80 (2013).

ADS 

Google Scholar
 

Prince, J. et al. Self-cleaning metal organic framework (MOF) based ultra filtration membranes — a solution to bio-fouling in membrane separation processes. Sci. Rep. 4, 6555 (2014).


Google Scholar
 

Yot, P. et al. Metal-organic framework as potential shock absorbers, the case of the highly flexible MIL-53(Al). Chem. Comm. 50, 9462–9464 (2014).


Google Scholar
 

Lopez-Olivera, A. et al. SO2 capture by two aluminum-based MOFs: rigid-like MIL-53(Al)-tdc versus breathing MIL-53(Al)-bdc. ACS Appl. Mater. Interfaces 13, 39363–39370 (2021).


Google Scholar
 

Naskar, S., Fan, D., Ghoufi, A. & Maurin, G. Microscopic insight into the shaping of MOFs and its impact on CO2 capture performance. Chem. Sci. 14, 10435–10445 (2023).


Google Scholar
 

Wu, S. Interfacial and surface tensions of polymers. J. Macromol. Sci. C 10, 1–73 (1974).


Google Scholar
 

Wang, K. et al. Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chem. Soc. Rev. 51, 672–719 (2022).


Google Scholar
 

Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805).

ADS 

Google Scholar
 

Laplace, P. Supplément au tome 10 de Mécanique Céleste (Duprat, 1886).

Jurin, J. An account of some experiments shown before the Royal Society; with an enquiry into the cause of some of the ascent and suspension of water in capillary tubes. Philos. Trans. R. Soc. Lond. 30, 739–747 (1718).


Google Scholar
 

Brown, R. C. The fundamental concepts concerning surface tension and capillarity. Proc. Phys. Soc. 59, 429 (1947).

ADS 

Google Scholar
 

Couchman, P. R. & Jesser, W. A. On the thermodynamics of surfaces. Surf. Sci. 34, 212–224 (1973).


Google Scholar
 

Cahn, J. W. Thermodynamics of Solid and Fluid Surfaces Ch. 1 (American Society of Metals, 1979).

Andreotti, B. & Snoeijer, J. H. Soft wetting and the Shuttleworth effect, at the crossroads between thermodynamics and mechanics. Europhys. Lett. 113, 66001 (2016).

ADS 

Google Scholar
 

Müller, P. & Métois, J. J. Anisotropy of the surface thermodynamic properties of silicon. Thin Solid Films 517, 65–68 (2008).

ADS 

Google Scholar
 

Cammarata, R. & Sieradzki, K. Surface and interface stresses. Annu. Rev. Mater. Sci. 24, 215–234 (1994).

ADS 

Google Scholar
 

Gibbs, J. The Collected Work of JW Gibbs Vol. 1 (Yale Univ. Press, 1957).

Kramer, D. & Weissmuller, J. A note on surface stress and surface tension and their interrelation via Shuttleworth’s equation and the Lippmann equation. Surf. Sci. 14, 3042–3052 (2007).

ADS 

Google Scholar
 

Irving, J. & Kirkwood, J. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817 (1950).

ADS 
MathSciNet 

Google Scholar
 

Gloor, G., Jackson, G., Blas, F. & de Miguel, E. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. J. Chem. Phys. 123, 134703 (2005).

ADS 

Google Scholar
 

Ghoufi, A., Goujon, F., Lachet, V. & Malfreyt, P. Multiple histogram reweighting method for the surface tension calculation. J. Chem. Phys. 128, 154716 (2008).

ADS 

Google Scholar
 

Ghoufi, A. & Malfreyt, P. Calculation of the surface tension and pressure components from a non-exponential perturbation method of the thermodynamic route. J. Chem. Phys. 136, 024104 (2012).

ADS 

Google Scholar
 

Ghoufi, A., Malfreyt, P. & Tildesley, D. J. Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface. Chem. Rev. Soc. 45, 1387–1409 (2016).


Google Scholar
 

Lippmann, G. Ann. Chim. Phys. Paris 5, 494 (1875).

Gibbs, J. The Scientific Papers of J. Willard Gibbs (Longmans and Green, 1931).

Bottomley, D. J., Makkonen, L. & Kolari, K. Incompatibility of the Shuttleworth equation with Hermann’s mathematical structure of thermodynamics. Surf. Sci. 601, 97–101 (2009).

ADS 

Google Scholar
 

Marichev, V. A. The Shuttleworth equation: its modifications and current state. Prot. Met. Phys. Chem. Surf. 47, 25–30 (2011).


Google Scholar
 

Shuttleworth, R. The surface tension of solids. Proc. Phys. Soc. A 63, 444 (1950).

ADS 

Google Scholar
 

Eriksson, J. Thermodynamics of surface phase systems v. contribution to the thermodynamics of the solid-gas interface. Surf. Sci. 14, 221–246 (1969).

ADS 

Google Scholar
 

Miyazaki, J., Barker, J. & Pound, G. A new Monte Carlo method for calculating surface tension. J. Chem. Phys. 64, 3364–3369 (1976).

ADS 

Google Scholar
 

Broughton, J. & Gilmer, G. Molecular dynamics investigation of the crystal–fluid interface. VI. Excess surface free energies of crystal–liquid systems. J. Chem. Phys. 84, 5759–5768 (1986).

ADS 

Google Scholar
 

Leroy, F., dos Santos, D. & Müller-Plathe, F. Interfacial excess free energies of solid–liquid interfaces by molecular dynamics simulation and thermodynamic integration. Macromol. Rapid Commun. 30, 864–870 (2009).


Google Scholar
 

Leroy, F. & Muller-Plathe, F. Dry-surface simulation method for the determination of the work of adhesion of solid–liquid interfaces. Langmuir 31, 8335–8345 (2015).


Google Scholar
 

Pasquale, N. D. & Davidchack, R. A unified description of surface free energy and surface stress. Preprint at https://arxiv.org/pdf/1911.02130v4 (2019).

Pasquale, N. D. & Davidchack, R. Shuttleworth equation: a molecular simulations perspective. J. Chem. Phys. 153, 154705 (2020).

ADS 

Google Scholar
 

Pasquale, N. D. & Davidchack, R. Cleaving method for molecular crystals and its application to calculation of the surface free energy of crystalline β d-mannitol at room temperature. J. Phys. Chem. A 126, 2134–2141 (2022).


Google Scholar
 

Orselly, M. et al. Molecular interactions at the metal-liquid interfaces. J. Chem. Phys. 156, 234705 (2022).

ADS 

Google Scholar
 

Kanhaiya, K., Kim, S., Im, W. & Heinz, H. Accurate simulation of surfaces and interfaces of ten fcc metals and steel using Lennard–Jones potentials. npj Comput. Mater. 7, 18 (2021).

ADS 

Google Scholar
 

Benjamin, R. & Horbach, J. Crystal-liquid interfacial free energy via thermodynamic integration. J. Chem. Phys. 141, 044715 (2014).

ADS 

Google Scholar
 

Wu, T. & Firoozabadi, A. Calculation of solid–fluid interfacial free energy with consideration of solid deformation by molecular dynamics simulations. J. Phys. Chem. A 125, 5845–5848 (2021).


Google Scholar
 

Parambathu, A. V., dos Santos, T. J. P., Chapman, W. G. & Asthagiri, D. N. Comment on “Calculation of solid–fluid interfacial free energy with consideration of solid deformation by molecular dynamics”. J. Phys. Chem. A 126, 1782–1783 (2022).


Google Scholar
 

Addula, R. & Punnathanam, S. Computation of solid–fluid interfacial free energy in molecular systems using thermodynamic integration. J. Chem. Phys. 153, 154504 (2020).

ADS 

Google Scholar
 

Yeandel, S., Freeman, C. & Harding, J. A general method for calculating solid/liquid interfacial free energies from atomistic simulations: application to CaSO4–xH2O. J. Chem. Phys. 157, 084117 (2022).

ADS 

Google Scholar
 

Sanchez-Burgos, I. & Espinosa, J. Direct calculation of the interfacial free energy between NaCl crystal and its aqueous solution at the solubility limit. Phys. Rev. Lett. 130, 118001 (2023).

ADS 

Google Scholar
 

Ghoufi, A. Surface free energy calculation of the solid–fluid interfaces from molecular simulation. AIP Adv. 14, 045116 (2024).

ADS 

Google Scholar
 

Frenkel, D. & Smith, B. Understanding Molecular Simulation. From Algorithms to Applications 2nd edn (Academic, 2002).

Allen, M. P. & Tildesley, D. J. Computer Simulations of Liquids (Oxford, 1987).

Noid, W. G., Szukalo, R. J., Kidder, K. M. & Lesniewski, M. C. Rigorous progress in coarse-graining. Annu. Rev. Phys. Chem. 75, 21 (2024).


Google Scholar
 

Biscay, F., Ghoufi, A., Goujon, F., Lachet, V. & Malfreyt, P. Calculation of the surface tension from Monte Carlo simulations: does the model impact on the finite-size effects? J. Chem. Phys. 130, 184710 (2009).

ADS 

Google Scholar
 

Gor, G. & Bernstein, N. Adsorption-induced surface stresses of the water/quartz interface: ab initio molecular dynamics study. Langmuir 32, 5259–5266 (2016).


Google Scholar
 

Morris, J. & Song, X. The anisotropic free energy of the Lennard–Jones crystal-melt interface. J. Chem. Phys. 119, 3920–3925 (2003).

ADS 

Google Scholar
 

Müller, P. & Saùl, A. Elastic effects on surface physics. Surf. Sci. Rep. 54, 157–258 (2004).

ADS 

Google Scholar
 

Dreher, T. et al. Anisotropic surface stresses of a solid/fluid interface: molecular dynamics calculations for the copper/methane interface. J. Chem. Phys. 151, 244703 (2019).

ADS 

Google Scholar
 

Muller, E. A., Ervik, A. & Mejia, A. A guide to computing interfacial properties of fluids from molecular simulations. Living J. Comput. Mol. Sci. 2, 21385 (2021).


Google Scholar
 

Forester, T. R & Smith, W. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism J. Mater. Chem. 16, 1911–1918 (2006).


Google Scholar
 

Vanommeslaeghe, K. et al. CHARMM General Force Field (CGenFF): a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).


Google Scholar
 

Berendsen, H., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Comm. 91, 43–56 (1995).

ADS 

Google Scholar
 

Thompson, A. P. et al. LAMMPS: a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Comm. 271, 10817 (2022).


Google Scholar
 

Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).


Google Scholar
 

Meunier, M. Guest editorial. Mol. Simul. 34, 887–888 (2008).


Google Scholar
 

Brukhno, A. et al. DL_MONTE: a multipurpose code for Monte Carlo simulation. Mol. Simul. 47, 131–151 (2021).


Google Scholar
 

Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 82–101 (2015).


Google Scholar
 

Pasquale, N. D., Davidchack, R. & Rovigatti, L. Cleaving: a LAMMPS package to compute surface free energies. J. Open Source Softw. 9, 5886 (2024).

ADS 

Google Scholar
 

Clark, S. J. et al. First principles methods using CASTEP. Z. Krist. 220, 567–570 (2005).


Google Scholar
 

Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package — Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

ADS 

Google Scholar
 

Kresse, G. & Haner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

ADS 

Google Scholar
 

Semino, R., Ramsahye, N., Ghoufi, A. & Maurin, G. Microscopic model of the metal-organic framework/polymer interface: a first step toward understanding the compatibility in mixed matrix membranes. ACS Appl. Mater. Interfaces 8, 809–819 (2016).


Google Scholar
 

Kirkwood, J. G. & Buff, F. P. The statistical mechanical theory of solutions. I. J. Chem. Phys. 17, 338 (1949).

ADS 

Google Scholar
 

Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–648 (2001).

ADS 

Google Scholar
 

Ibergay, C. et al. Molecular simulations of the n-alkane liquid-vapor interface: interfacial properties and their long range corrections. Phys. Rev. E 75, 051602 (2007).

ADS 

Google Scholar
 

Malijevsky, A. & Jackson, G. A perspective on the interfacial properties of nanoscopic liquid drops. J. Phys. Condens. Matter 24, 464121 (2012).

ADS 

Google Scholar
 

Lau, G., Ford, I., Hunt, P., Müller, E. & Jackson, G. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water. J. Chem. Phys. 142, 114701 (2015).

ADS 

Google Scholar
 

D’Oliveira, H., Davoy, X., Arche, E., Malfreyt, P. & Ghouif, A. Test-area surface tension calculation of the graphene-methane interface: fluctuations and commensurability. J. Chem. Phys. 146, 214112 (2017).

ADS 

Google Scholar
 

Ghoufi, A. & Malfreyt, P. Calculation of the surface tension of water: 40 years of molecular simulations. Mol. Simul. 45, 295–303 (2018).


Google Scholar
 

Frolov, T. & Mishin, Y. Temperature dependence of the surface free energy and surface stress: an atomistic calculation for Cu(110). Phys. Rev. B 79, 045430 (2009).

ADS 

Google Scholar
 

Alejandre, J., Tildesley, D. & Chapela, G. Molecular dynamics simulation of the orthobaric densities and surface tension of water. J. Chem. Phys. 102, 4574–4583 (1995).

ADS 

Google Scholar
 

Ghoufi, A. & Malfreyt, P. Local description of surface tension through thermodynamic and mechanical definitions. Mol. Simul. 39, 603 (2012).


Google Scholar
 

Walton, J. P. R. B., Tildesley, D. J., Rowlinson, J. S. & Henderson, J. R. The pressure tensor at the planar surface of a liquid. Mol. Phys. 48, 1357 (1983).

ADS 

Google Scholar
 

Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta 1286, 183 (1996).


Google Scholar
 

Lu, W.-L. et al. Atomistic simulation study of the fcc and bcc crystal-melt. Surf. Interfaces 28, 101639 (2022).


Google Scholar
 

Shi, K., Smith, E., Santiago, E. & Gubbins, K. A perspective on the microscopic pressure (stress) tensor. J. Chem. Phys. 158, 040901 (2023).

ADS 

Google Scholar
 

Heinz, H. Calculation of local and average pressure tensors in molecular simulations. Mol. Simul. 33, 747–758 (2007).


Google Scholar
 

Heinz, H., Paul, W. & Binder, K. Calculation of local pressure tensors in systems with many-body interactions. Phys. Rev. E 72, 066704 (2005).

ADS 
MathSciNet 

Google Scholar
 

Ndao, M., Goujon, F., Ghoufi, A. & Malfreyt, P. Coarse-grained modeling of the oil-water-surfactant interface through the local definition of the pressure tension and interfacial tension. Theor. Chem. Acc. 136, 2038 (2017).


Google Scholar
 

Broughton, J. & Gilmer, G. Molecular dynamics investigation of the crystal–fluid interface. I. Bulk properties. J. Chem. Phys. 79, 5095–5104 (1983).

ADS 

Google Scholar
 

Davidchack, R. & Laird, B. Direct calculation of the hard-sphere crystal/melt interfacial free energy. Phys. Rev. Lett. 85, 4571 (2000).


Google Scholar
 

Davidchack, R. & Laird, B. Direct calculation of the crystal–melt interfacial free energies for continuous potentials: application to the Lennard-Jones system. J. Chem. Phys. 118, 7651 (2003).

ADS 

Google Scholar
 

Davidchack, R. & Laird, B. Crystal structure and interaction dependence of the crystal-melt interfacial free energy. Phys. Rev. Lett. 94, 086102 (2005).

ADS 

Google Scholar
 

Marichev, V. A. Vague concept of “reversible cleavage” in the theory of the surface tension of solids. Surf. Sci. 603, 3212–3214 (2009).

ADS 

Google Scholar
 

Marichev, V. A. Concept of reversible cleavage in surface tension of solids. Prot. Met. Phys. Chem. Surf. 46, 21–26 (2010).


Google Scholar
 

Davidchack, R., Handel, R., Anwar, J. & Brukhno, A. Ice Ih–water interfacial free energy of simple water models with full electrostatic interactions. J. Chem. Phys. 8, 2383–2390 (2012).


Google Scholar
 

Zhou, Q. & Fichthorm, K. Obtaining the solid-liquid interfacial free energy via multi-scheme thermodynamic integration: Ag-ethylene glycol interfaces. J. Chem. Phys. 145, 194108 (2016).

ADS 

Google Scholar
 

Pasquale, N. D. & Davidchack, R. Cleaving method for molecular crystals and its application to calculation of the surface free energy of crystalline β-d-mannitol at room temperature. J. Phys. Chem. A 126, 2134–2141 (2022).


Google Scholar
 

Handel, R., Davidchack, R., Anwar, J. & Brukhno, A. Direct calculation of solid-liquid interfacial free energy for molecular systems TIP4P ice water interface. Phys. Rev. Lett. 100, 036104 (2008).

ADS 

Google Scholar
 

Davidchack, R. Hard spheres revisited: accurate calculation of the solid–liquid interfacial free energy. J. Chem. Phys. 133, 234701 (2010).

ADS 

Google Scholar
 

Leroy, F. & Muller-Plathe, F. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. J. Chem. Phys. 133, 044110 (2019).

ADS 

Google Scholar
 

Surblys, D., Leroy, F., Yamaguchi, Y. & Muller-Plathe, F. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface. J. Chem. Phys. 149, 134707 (2018).

ADS 

Google Scholar
 

Zwanzig, R. W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 22, 1420 (1954).

ADS 

Google Scholar
 

Leroy, F. & Muller-Plathe, F. Can continuum thermodynamics characterize Wenzel wetting states of water at the nanometer scale? J. Chem. Theory Comput. 8, 3724–3732 (2012).


Google Scholar
 

Ardham, V., Deichmann, G., van der Vegt, N. & Leroy, F. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method. J. Chem. Phys. 28, 234135 (2015).


Google Scholar
 

Leroy, F., Liu, S. & Zhang, J. Parametrizing nonbonded interactions from wetting experiments via the work of adhesion: example of water on graphene surfaces. J. Phys. Chem. C 119, 28470 (2015).


Google Scholar
 

Leroy, F. & Muller-Plathe, F. Calculation of the work of adhesion of solid–liquid interfaces by molecular dynamics simulations. In NIC Symposium 2016 Vol. 48 (eds Binder, K. et al.) 279 (2016); https://juser.fz-juelich.de/record/503526/files/nic_2016_leroy.pdf?version=1.

Mezei, M. & Beveridge, D. Free energy simulations. Ann. N. Y. Acad. Sci. 482, 1 (1986).

ADS 

Google Scholar
 

Chipot, C. & Pohorille, A. Free Energy Calculations: Theory and Applications in Chemistry and Biology (Springer, 2007).

Guo, M. & Lu, B.-Y. Long range corrections to thermodynamic properties of inhomogeneous systems with planar interfaces. J. Chem. Phys. 106, 3688–3695 (1997).

ADS 

Google Scholar
 

Janecek, J. Long range corrections in inhomogeneous simulations. J. Phys. Chem. B 110, 6264–6269 (2006).


Google Scholar
 

Bourrasseau, E., Malfreyt, P. & Ghoufi, A. Surface tension and long range corrections of cylindrical interfaces. J. Chem. Phys. 21, 234708 (2015).

ADS 

Google Scholar
 

Laird, B., Davidchack, R., Yang, Y. & Asta, M. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs–Cahn integration. J. Chem. Phys. 131, 114110 (2009).

ADS 

Google Scholar
 

Foiles, S. & Adams, J. Thermodynamic properties of fcc transition metals as calculated with the embedded-atom method. Phys. Rev. B 40, 5909 (1989).

ADS 

Google Scholar
 

Mishin, Y., Mehl, M., Papaconstantopoulos, D., Voter, A. & Kress, J. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).

ADS 

Google Scholar
 

Foiles, S. Evaluation of harmonic methods for calculating the free energy of defects in solids. Phys. Rev. B 49, 14930 (1994).

ADS 

Google Scholar
 

Turnbull, D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950).

ADS 

Google Scholar
 

Werder, T. et al. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano. Lett. 1, 697–702 (2001).

ADS 

Google Scholar
 

Santiso, E., Herdes, C. & Muller, E. On the calculation of solid-fluid contact angles from molecular dynamics. Entropy 15, 3734–3745 (2013).

ADS 

Google Scholar
 

Essafri, I. et al. Contact angle and surface tension of water on a hexagonal boron nitride monolayer: a methodological investigation. Mol. Simul. 45, 454–461 (2019).


Google Scholar
 

Hoyt, J., Asta, M. & Karma, A. Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys. Rev. Lett. 86, 5530 (2001).

ADS 

Google Scholar
 

Asta, M., Hoyt, J. & Karma, A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B 66, 1001101(R) (2002).


Google Scholar
 

Morris, J. Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B 66, 144104 (2002).

ADS 

Google Scholar
 

Davidchack, R., Morris, J. & Laird, B. The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. J. Chem. Phys. 125, 094710 (2006).

ADS 

Google Scholar
 

Altmann, S. & Cracknell, A. Lattice harmonics 8. Cubic groups. Rev. Mod. Phys. 37, 19 (1965).

ADS 
MathSciNet 

Google Scholar
 

Fehlmer, W. & Vosko, S. A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys. 54, 2159 (1976).

ADS 

Google Scholar
 

Karma, A. & Rappel, W. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323 (1998).

ADS 

Google Scholar
 

Ismail, A. E., Grest, G. & Stevens, M. Capillary waves at the liquid-vapor interface and the surface tension of water. J. Chem. Phys. 125, 014702 (2006).

ADS 

Google Scholar
 

Dolce, D., Swamy, A., Hoyt, J. & Choudhury, P. Computing the solid-liquid interfacial free energy and anisotropy of the Al-Mg system using a MEAM potential with atomistic simulations. Comput. Mat. Sci. 217, 111901 (2023).


Google Scholar
 

Becker, C., Olmsted, D., Asta, M., Hoyt, J. & Foiles, S. Atomistic simulations of crystal-melt interfaces in a model binary alloy: interfacial free energies, adsorption coefficients, and excess entropy. Phys. Rev. B 79, 054109 (2009).

ADS 

Google Scholar
 

Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem 32, 2319–2327 (2011).


Google Scholar
 

Espinosa, J., Vega, C. & Sanz, E. The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations. J. Chem. Phys. 141, 134709 (2014).

ADS 

Google Scholar
 

Espinosa, J., Vega, C., Valeriani, C. & Sanz, E. The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods. J. Chem. Phys. 142, 194709 (2015).

ADS 

Google Scholar
 

Tejedor, A. et al. Mold: a LAMMPS package to compute interfacial free energies and nucleation rates. J. Open Source Softw. 19, 6083 (2024).

ADS 

Google Scholar
 

de Hijes, P. M. & Vega, C. On the thermodynamics of curved interfaces and the nucleation of hard spheres in a finite system. J. Chem. Phys. 156, 014505 (2022).

ADS 

Google Scholar
 

de Hijes, P. M., Espinosa, J., Bianco, V., Sanz, E. & Vega, C. Interfacial free energy and Tolman length of curved liquid–solid interfaces from equilibrium studies. J. Phys. Chem. C 124, 8795–8805 (2020).


Google Scholar
 

Alekseechkin, N. Thermodynamic theory of curvature-dependent surface tension: Tolman’s theory revisited. Langmuir 40, 6834–6846 (2024).


Google Scholar
 

Homman, A.-A. et al. Surface tension of spherical drops from surface of tension. J. Chem. Phys. 21, 034110 (2014).

ADS 

Google Scholar
 

Hill, T. Thermodynamics of small systems. J. Chem. Phys. 36, 3182 (1962).

ADS 

Google Scholar
 

Dong, W. Thermodynamics of interfaces extended to nanoscales by introducing integral and differential surface tensions. Proc. Natl Acad. Sci. USA. 118, e2019873118 (2021).

MathSciNet 

Google Scholar
 

Dong, W. Nanoscale thermodynamics needs the concept of a disjoining chemical potential. Nat. Comm. 14, 1824 (2023).


Google Scholar
 

Jiang, H., Zhao, S. & Dong, W. Simulations evidencing two surface tensions for fluids confined in nanopores. Chem. Eng. Sci. 302, 2025 (2024).


Google Scholar
 

Ho, R. et al. Determination of surface heterogeneity of β mannitol by sessile drop contact angle and finite concentration inverse gas chromatography. Int. J. Pharm. 387, 79–86 (2010).


Google Scholar
 

Abascal, J. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 23505 (2005).


Google Scholar