MacLeod, M. et al. The global threat from plastic pollution. Science 373, 61–65 (2021).

Article 
CAS 

Google Scholar
 

Omura, T. et al. Microbial decomposition of biodegradable plastics on the deep-sea floor. Nat. Commun. 15, 568 (2024).

Article 
CAS 

Google Scholar
 

Bergmann, M. et al. Plastic pollution in the Arctic. Nat. Rev. Earth Environ. 3, 323–337 (2022).

Article 
CAS 

Google Scholar
 

Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8.9, 3494–3511 (2020).

Article 

Google Scholar
 

Corinaldesi, C. et al. Multiple impacts of microplastics can threaten marine habitat-forming species. Commun. Biol. 4, 431 (2021).

Article 

Google Scholar
 

Law, K. L. Plastics in the marine environment. Annu. Rev. Mar. Sci. 9, 205–229 (2017).

Article 

Google Scholar
 

United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda (2015).

Beaumont, N. J. et al. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142, 189–195 (2019).

Article 
CAS 

Google Scholar
 

Rodrigues, M. O. et al. Impacts of plastic products used in daily life on the environment and human health: What is known?. Environ. Toxicol. Pharmacol. 72, 103239 (2019).

Article 
CAS 

Google Scholar
 

Cucina, M. The lesser of two evils: Enhancing biodegradable bioplastics use to fight plastic pollution requires policy makers interventions in Europe. Environ. Impact Assess. Rev. 103, 107230 (2023).

Article 

Google Scholar
 

European Commission. A European strategy for plastics in a circular economy. COM/2018/028. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52018DC0028 (2018).

Directive (EU) 2019/904 of the European Parliament and of the Council on the reduction of the impact of certain plastic products on the environment. https://eur-lex.europa.eu/eli/dir/2019/904/oj/eng (2019).

Borg, K. et al. Curbing plastic consumption: A review of single-use plastic behaviour change interventions. J. Clean. Prod. 344, 131077 (2022).

Article 

Google Scholar
 

Schnurr, R. E. J. et al. Reducing marine pollution from single-use plastics (SUPs): A review. Mar. Pollut. Bull. 137, 157–171 (2018).

Article 
CAS 

Google Scholar
 

Xia, Q. et al. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4.7, 627–635 (2021).

Article 

Google Scholar
 

Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

Article 

Google Scholar
 

Mordor Intelligence. Nanotechnology Drug Delivery Market – Share Analysis, Growth Trends & Forecasts (2024–2029). https://www.mordorintelligence.com/industry-reports/global-uht-milkmarket (2023).

Expert Market Research. Global Polylactic Acid (PLA) Market Size Analysis Report – Market Share, Forecast Trends and Outlook (2024–2032). https://www.expertmarketresearch.com/reports/polylactic-acid-pla-market/toc (2023).

Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J. & Le, T. A. T. Environmental impact of bioplastic use: A review. Heliyon 7, e07918 (2021).

Article 
CAS 

Google Scholar
 

Miksch, L., Köck, M., Gutow, L. & Saborowski, R. Bioplastics in the sea: Rapid in-vitro evaluation of degradability and persistence at natural temperatures. Front. Mar. Sci. 9, 920293 (2022).

Article 

Google Scholar
 

de Vogel, F. A. et al. Biodegradable plastics in Mediterranean coastal environments feature contrasting microbial succession. Sci. Total Environ. 928, 172288 (2024).

Article 

Google Scholar
 

Chen, Z., Wei, W., Liu, X. & Ni, B. J. Emerging electrochemical techniques for identifying and removing micro/nanoplastics in urban waters. Water Res. 221, 118846 (2022).

Article 
CAS 

Google Scholar
 

European Bioplastics. Market data. https://www.european-bioplastics.org/market/# (accessed July 2025).

Mehmood, A., Raina, N., Phakeenuya, V., Wonganu, B. & Cheenkachorn, K. The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Mater. Today Proc. 72, 3049–3055 (2023).

Article 
CAS 

Google Scholar
 

Swetha, T. A. et al. A review on biodegradable polylactic acid (PLA) production from fermentative food waste—Its applications and degradation. Int. J. Biol. Macromol. 234, 123703 (2023).

Article 
CAS 

Google Scholar
 

Qi, X., Bo, Y., Ren, Y. & Wang, X. The anaerobic biodegradation of poly(lactic) acid textiles in photosynthetic microbial fuel cells: self-sustained bioelectricity generation. Polym. Degrad. Stab. 148, 42–49 (2018).

Article 
CAS 

Google Scholar
 

Venâncio, C., Lopes, I. & Oliveira, M. Bioplastics: known effects and potential consequences to marine and estuarine ecosystem services. Chemosphere 309, 136810 (2022).

Article 

Google Scholar
 

Nandakumar, A., Chuah, J. A. & Sudesh, K. Bioplastics: A boon or bane?. Renew. Sustain. Energy Rev. 147, 111237 (2021).

Article 
CAS 

Google Scholar
 

Anderson, G. & Shenkar, N. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environ. Pollut. 268, 115364 (2021).

Article 
CAS 

Google Scholar
 

Tamayo-Belda, M. et al. Effects of petroleum-based and biopolymer-based nanoplastics on aquatic organisms: a case study with mechanically degraded pristine polymers. Sci. Total Environ. 883, 163447 (2023).

Article 
CAS 

Google Scholar
 

Zhong, Z. et al. Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. Sci. Total Environ. 946, 174386 (2024).

Article 
CAS 

Google Scholar
 

Beltrán-Sanahuja, A., Casado-Coy, N., Simó-Cabrera, L. & Sanz-Lázaro, C. Monitoring polymer degradation under different conditions in the marine environment. Environ. Pollut. 259, 113836 (2020).

Article 

Google Scholar
 

Shin, M. et al. Biodegradation behavior of polyesters with various internal chemical structures and external environmental factors in real seawater. Polym. Test. 132, 108357 (2024).

Article 
CAS 

Google Scholar
 

Nazareth, M., Marques, M. R., Leite, M. C. & Castro, ÍB. Commercial plastics claiming biodegradable status: is this also accurate for marine environments?. J. Hazard. Mater. 366, 714–722 (2019).

Article 
CAS 

Google Scholar
 

Odobel, C. et al. Bacterial abundance, diversity and activity during long-term colonization of non-biodegradable and biodegradable plastics in seawater. Front. Microbiol. 12, 734782 (2021).

Article 

Google Scholar
 

Bagheri, A. R., Laforsch, C., Greiner, A. & Agarwal, S. Fate of so-called biodegradable polymers in seawater and freshwater. Glob. Chall. 1, 1700048 (2017).

Article 

Google Scholar
 

Gerritse, J., Leslie, H. A., de Tender, C. A., Devriese, L. I. & Vethaak, A. D. Fragmentation of plastic objects in a laboratory seawater microcosm. Sci. Rep. 10, 10945 (2020).

Article 
CAS 

Google Scholar
 

Eronen-Rasimus, E. L., Nakki, P. P. & Kaartokallio, H. P. Degradation rates and bacterial community compositions vary among commonly used bioplastic materials in a brackish marine environment. Environ. Sci. Technol. 56, 15760–15769 (2022).

Article 
CAS 

Google Scholar
 

Cheung, C. K. H. & Not, C. Degradation efficiency of biodegradable plastics in subtropical open-air and marine environments: Implications for plastic pollution. Sci. Total Environ. 938, 173397 (2024).

Article 
CAS 

Google Scholar
 

Nguyen, N. H. et al. Attached and planktonic bacterial communities on bio-based plastic granules and micro-debris in seawater and freshwater. Sci. Total Environ. 785, 147413 (2021).

Article 
CAS 

Google Scholar
 

Lyu, L. et al. The degradation of polylactic acid face mask components in different environments. J. Environ. Manag. 370, 122731 (2024).

Article 
CAS 

Google Scholar
 

Li, Y. Z. et al. Degradation kinetics and performances of poly(lactic acid) films in artificial seawater. Chem. Pap. 76, 5929–5941 (2022).

Article 
CAS 

Google Scholar
 

Nie, Z. et al. Effects of polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT) biodegradable microplastics on the abundance and diversity of denitrifying and anammox bacteria in freshwater sediment. Environ. Pollut. 315, 120343 (2022).

Article 
CAS 

Google Scholar
 

Deroiné, M. et al. Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polym. Degrad. Stab. 108, 319–329 (2014).

Article 

Google Scholar
 

Seeley, M. E. et al. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun. 11, 2372 (2020).

Article 
CAS 

Google Scholar
 

Sanz-Lázaro, C., Casado-Coy, N. & Beltrán-Sanahuja, A. Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment. Sci. Total Environ. 756, 143978 (2021).

Article 

Google Scholar
 

Pinnell, L. J. & Turner, J. W. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front. Microbiol. 10, 1252 (2019).

Article 

Google Scholar
 

Dussud, C. et al. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front. Microbiol. 9, 1571 (2018).

Article 

Google Scholar
 

Suzuki, M. et al. A novel poly(3-hydroxybutyrate)-degrading actinobacterium that was isolated from plastisphere formed on marine plastic debris. Polym. Degrad. Stab. 183, 109461 (2021).

Article 
CAS 

Google Scholar
 

Kuroda, K. et al. Metagenomic and metatranscriptomic analyses reveal uncharted microbial constituents responsible for polyhydroxybutyrate biodegradation in coastal waters. J. Hazard. Mater. 487, 137202 (2025).

Article 
CAS 

Google Scholar
 

Delacuvellerie, A. et al. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J. Hazard. Mater. 419, 126526 (2021).

Article 
CAS 

Google Scholar
 

Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).

Article 

Google Scholar
 

Corinaldesi, C., Dell’Anno, A. & Danovaro, R. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes. ISME J. 6, 1250–1259 (2012).

Article 
CAS 

Google Scholar
 

Krasowska, K. & Heimowska, A. Degradability of polylactide in natural aqueous environments. Water 15, 198 (2023).

Article 
CAS 

Google Scholar
 

Rodrigues, C. A., Tofanello, A., Nantes, I. L. & Rosa, D. S. Biological oxidative mechanisms for degradation of poly(lactic acid) blended with thermoplastic starch. ACS Sustain. Chem. Eng. 3, 2756–2766 (2015).

CAS 

Google Scholar
 

Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).

Article 

Google Scholar
 

Manea, E. et al. Viral infections boost prokaryotic biomass production and organic C cycling in hadal trench sediments. Front. Microbiol. 10, 1952 (2019).

Article 

Google Scholar
 

Urbanek, A. K., Rymowicz, W. & Mirończuk, A. M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 102, 7669–7678 (2018).

Article 
CAS 

Google Scholar
 

Bubpachat, T., Sombatsompop, N. & Prapagdee, B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym. Degrad. Stab. 152, 75–85 (2018).

Article 
CAS 

Google Scholar
 

Romera-Castillo, C., Mallenco-Fornies, R., Saá-Yánez, M. & Álvarez-Salgado, X. A. Leaching and bioavailability of dissolved organic matter from petrol-based and biodegradable plastics. Mar. Environ. Res. 176, 105607 (2022).

Article 

Google Scholar
 

Birnstiel, S., Sebastián, M. & Romera-Castillo, C. Structure and activity of marine bacterial communities responding to plastic leachates. Sci. Total Environ. 834, 155264 (2022).

Article 
CAS 

Google Scholar
 

Rastelli, E. et al. Drivers of bacterial α- and β-diversity patterns and functioning in subsurface hadal sediments. Front. Microbiol. 10, 2609 (2019).

Article 

Google Scholar
 

Tong, D. et al. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil. ISME J. 17, 1247–1256 (2023).

Article 
CAS 

Google Scholar
 

Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

Article 
CAS 

Google Scholar
 

Tejedor, E. et al. Recent heatwaves as a prelude to climate extremes in the western Mediterranean region. npj Clim. Atmos. Sci. 7, 218 (2024).

Article 

Google Scholar
 

Corinaldesi, C. et al. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Sci. Total Environ. 823, 153701 (2022).

Article 
CAS 

Google Scholar
 

Bird, L. J. et al. Marinobacter: A case study in bioelectrochemical chassis evaluation. Microb. Biotechnol. 16.3, 494–506 (2023).

Article 

Google Scholar
 

Zhao, S. et al. Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep-sea sediments. Environ. Microbiol. 25, 2719–2731 (2023).

Article 
CAS 

Google Scholar
 

Handley, K. M. & Lloyd, J. R. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front. Microbiol. 4, 136 (2013).

Article 

Google Scholar
 

Branchu, P. et al. Impact of temperature on Marinobacter hydrocarbonoclasticus SP17 morphology and biofilm structure during growth on alkanes. Microbiology 163, 669–677 (2017).

Article 
CAS 

Google Scholar
 

Cheng, J. et al. Relative influence of plastic debris size and shape, chemical composition and phytoplankton-bacteria interactions in driving seawater plastisphere abundance, diversity and activity. Front. Microbiol. 11, 610231 (2021).

Article 

Google Scholar
 

Singleton, S. L. et al. Identification of rare microbial colonizers of plastic materials incubated in a coral reef environment. Front. Microbiol. 14, 1259014 (2023).

Article 

Google Scholar
 

Chow, J., Perez-Garcia, P., Dierkes, R. & Streit, W. R. Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microb. Biotechnol. 16, 195–217 (2023).

Article 
CAS 

Google Scholar
 

Fang, C. et al. Unveiling the impact of microplastics with distinct polymer types and concentrations on tidal sediment microbiome and nitrogen cycling. J. Hazard. Mater. 472, 134387 (2024).

Article 
CAS 

Google Scholar
 

Capolupo, M. et al. Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. Environ. Pollut. 319, 120951 (2023).

Article 
CAS 

Google Scholar
 

Pivokonsky, M. et al. Insight into the fate of bioplastic and similar plant-based material debris in aquatic environments via continuous monitoring of their leachate composition—release of carbon, metals, and additives. Sci. Total Environ. 949, 174913 (2024).

Article 
CAS 

Google Scholar
 

Corinaldesi, C. et al. High rates of viral lysis stimulate prokaryotic turnover and C recycling in bathypelagic waters of a Ligurian canyon (Mediterranean Sea). Prog. Oceanogr. 171, 70–75 (2019).

Article 

Google Scholar
 

Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).

Article 

Google Scholar
 

da Costa, V. S. et al. Marine climate indicators in the Adriatic Sea. Front. Clim. 6, 1449633 (2024).

Article 

Google Scholar
 

Jasso-Salcedo, A. B. et al. Disintegration of commercial single-use plastics from synthetic and biobased origins and effects on plant growth. Polym. Degrad. Stab. 230, 111071 (2024).

Article 
CAS 

Google Scholar
 

Danovaro, R. Methods for the Study of Deep-sea Sediments, Their Functioning and Biodiversity (CRC Press, 2010).

Gerchakov, S. M. & Hatcher, P. G. Improved technique for analysis of carbohydrates in sediments. Limnol. Oceanogr. 17, 938–943 (1972).

Article 
CAS 

Google Scholar
 

Noble, R. T. & Fuhrman, J. A. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118 (1998).

Article 

Google Scholar
 

Socal, G. et al. Metodologie di studio del plancton marino. ISPRA Manuali e Linee Guida 56/2010 (2010).

Dell’Anno, A., Corinaldesi, C., Magagnini, M. & Danovaro, R. Determination of viral production in aquatic sediments using the dilution-based approach. Nat. Protoc. 4, 1013–1022 (2009).

Article 

Google Scholar
 

Danovaro, R. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).

Article 
CAS 

Google Scholar
 

Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

Article 
CAS 

Google Scholar
 

Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

Article 
CAS 

Google Scholar
 

Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

Article 
CAS 

Google Scholar
 

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

Article 

Google Scholar
 

Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

Article 

Google Scholar
 

Callahan, B. Silva taxonomic training data formatted for DADA2 (Silva version 132) (2018).

Montgomery, D. C. Design and Analysis of Experiments (John Wiley & Sons, 2017).

Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proc. SIGCHI Conf. Hum. Factors Comput. Syst. 143–146 (ACM, 2011).

Edgar, R. C. Updating the 97 % identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).

Article 
CAS 

Google Scholar
 

Hughes, J. B. & Hellmann, J. J. The application of rarefaction techniques to molecular inventories of microbial diversity. Methods Enzymol. 397, 292–308 (2005).

Article 
CAS 

Google Scholar
 

McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

Article 
CAS 

Google Scholar
 

Liu, C., Cui, Y., Li, X. & Yao, M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).

Article 
CAS 

Google Scholar
 

Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

Article 

Google Scholar