MacLeod, M. et al. The global threat from plastic pollution. Science 373, 61–65 (2021).
Omura, T. et al. Microbial decomposition of biodegradable plastics on the deep-sea floor. Nat. Commun. 15, 568 (2024).
Bergmann, M. et al. Plastic pollution in the Arctic. Nat. Rev. Earth Environ. 3, 323–337 (2022).
Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8.9, 3494–3511 (2020).
Corinaldesi, C. et al. Multiple impacts of microplastics can threaten marine habitat-forming species. Commun. Biol. 4, 431 (2021).
Law, K. L. Plastics in the marine environment. Annu. Rev. Mar. Sci. 9, 205–229 (2017).
United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda (2015).
Beaumont, N. J. et al. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142, 189–195 (2019).
Rodrigues, M. O. et al. Impacts of plastic products used in daily life on the environment and human health: What is known?. Environ. Toxicol. Pharmacol. 72, 103239 (2019).
Cucina, M. The lesser of two evils: Enhancing biodegradable bioplastics use to fight plastic pollution requires policy makers interventions in Europe. Environ. Impact Assess. Rev. 103, 107230 (2023).
European Commission. A European strategy for plastics in a circular economy. COM/2018/028. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52018DC0028 (2018).
Directive (EU) 2019/904 of the European Parliament and of the Council on the reduction of the impact of certain plastic products on the environment. https://eur-lex.europa.eu/eli/dir/2019/904/oj/eng (2019).
Borg, K. et al. Curbing plastic consumption: A review of single-use plastic behaviour change interventions. J. Clean. Prod. 344, 131077 (2022).
Schnurr, R. E. J. et al. Reducing marine pollution from single-use plastics (SUPs): A review. Mar. Pollut. Bull. 137, 157–171 (2018).
Xia, Q. et al. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4.7, 627–635 (2021).
Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).
Mordor Intelligence. Nanotechnology Drug Delivery Market – Share Analysis, Growth Trends & Forecasts (2024–2029). https://www.mordorintelligence.com/industry-reports/global-uht-milkmarket (2023).
Expert Market Research. Global Polylactic Acid (PLA) Market Size Analysis Report – Market Share, Forecast Trends and Outlook (2024–2032). https://www.expertmarketresearch.com/reports/polylactic-acid-pla-market/toc (2023).
Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J. & Le, T. A. T. Environmental impact of bioplastic use: A review. Heliyon 7, e07918 (2021).
Miksch, L., Köck, M., Gutow, L. & Saborowski, R. Bioplastics in the sea: Rapid in-vitro evaluation of degradability and persistence at natural temperatures. Front. Mar. Sci. 9, 920293 (2022).
de Vogel, F. A. et al. Biodegradable plastics in Mediterranean coastal environments feature contrasting microbial succession. Sci. Total Environ. 928, 172288 (2024).
Chen, Z., Wei, W., Liu, X. & Ni, B. J. Emerging electrochemical techniques for identifying and removing micro/nanoplastics in urban waters. Water Res. 221, 118846 (2022).
European Bioplastics. Market data. https://www.european-bioplastics.org/market/# (accessed July 2025).
Mehmood, A., Raina, N., Phakeenuya, V., Wonganu, B. & Cheenkachorn, K. The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Mater. Today Proc. 72, 3049–3055 (2023).
Swetha, T. A. et al. A review on biodegradable polylactic acid (PLA) production from fermentative food waste—Its applications and degradation. Int. J. Biol. Macromol. 234, 123703 (2023).
Qi, X., Bo, Y., Ren, Y. & Wang, X. The anaerobic biodegradation of poly(lactic) acid textiles in photosynthetic microbial fuel cells: self-sustained bioelectricity generation. Polym. Degrad. Stab. 148, 42–49 (2018).
Venâncio, C., Lopes, I. & Oliveira, M. Bioplastics: known effects and potential consequences to marine and estuarine ecosystem services. Chemosphere 309, 136810 (2022).
Nandakumar, A., Chuah, J. A. & Sudesh, K. Bioplastics: A boon or bane?. Renew. Sustain. Energy Rev. 147, 111237 (2021).
Anderson, G. & Shenkar, N. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environ. Pollut. 268, 115364 (2021).
Tamayo-Belda, M. et al. Effects of petroleum-based and biopolymer-based nanoplastics on aquatic organisms: a case study with mechanically degraded pristine polymers. Sci. Total Environ. 883, 163447 (2023).
Zhong, Z. et al. Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. Sci. Total Environ. 946, 174386 (2024).
Beltrán-Sanahuja, A., Casado-Coy, N., Simó-Cabrera, L. & Sanz-Lázaro, C. Monitoring polymer degradation under different conditions in the marine environment. Environ. Pollut. 259, 113836 (2020).
Shin, M. et al. Biodegradation behavior of polyesters with various internal chemical structures and external environmental factors in real seawater. Polym. Test. 132, 108357 (2024).
Nazareth, M., Marques, M. R., Leite, M. C. & Castro, ÍB. Commercial plastics claiming biodegradable status: is this also accurate for marine environments?. J. Hazard. Mater. 366, 714–722 (2019).
Odobel, C. et al. Bacterial abundance, diversity and activity during long-term colonization of non-biodegradable and biodegradable plastics in seawater. Front. Microbiol. 12, 734782 (2021).
Bagheri, A. R., Laforsch, C., Greiner, A. & Agarwal, S. Fate of so-called biodegradable polymers in seawater and freshwater. Glob. Chall. 1, 1700048 (2017).
Gerritse, J., Leslie, H. A., de Tender, C. A., Devriese, L. I. & Vethaak, A. D. Fragmentation of plastic objects in a laboratory seawater microcosm. Sci. Rep. 10, 10945 (2020).
Eronen-Rasimus, E. L., Nakki, P. P. & Kaartokallio, H. P. Degradation rates and bacterial community compositions vary among commonly used bioplastic materials in a brackish marine environment. Environ. Sci. Technol. 56, 15760–15769 (2022).
Cheung, C. K. H. & Not, C. Degradation efficiency of biodegradable plastics in subtropical open-air and marine environments: Implications for plastic pollution. Sci. Total Environ. 938, 173397 (2024).
Nguyen, N. H. et al. Attached and planktonic bacterial communities on bio-based plastic granules and micro-debris in seawater and freshwater. Sci. Total Environ. 785, 147413 (2021).
Lyu, L. et al. The degradation of polylactic acid face mask components in different environments. J. Environ. Manag. 370, 122731 (2024).
Li, Y. Z. et al. Degradation kinetics and performances of poly(lactic acid) films in artificial seawater. Chem. Pap. 76, 5929–5941 (2022).
Nie, Z. et al. Effects of polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT) biodegradable microplastics on the abundance and diversity of denitrifying and anammox bacteria in freshwater sediment. Environ. Pollut. 315, 120343 (2022).
Deroiné, M. et al. Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polym. Degrad. Stab. 108, 319–329 (2014).
Seeley, M. E. et al. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun. 11, 2372 (2020).
Sanz-Lázaro, C., Casado-Coy, N. & Beltrán-Sanahuja, A. Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment. Sci. Total Environ. 756, 143978 (2021).
Pinnell, L. J. & Turner, J. W. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front. Microbiol. 10, 1252 (2019).
Dussud, C. et al. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front. Microbiol. 9, 1571 (2018).
Suzuki, M. et al. A novel poly(3-hydroxybutyrate)-degrading actinobacterium that was isolated from plastisphere formed on marine plastic debris. Polym. Degrad. Stab. 183, 109461 (2021).
Kuroda, K. et al. Metagenomic and metatranscriptomic analyses reveal uncharted microbial constituents responsible for polyhydroxybutyrate biodegradation in coastal waters. J. Hazard. Mater. 487, 137202 (2025).
Delacuvellerie, A. et al. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J. Hazard. Mater. 419, 126526 (2021).
Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).
Corinaldesi, C., Dell’Anno, A. & Danovaro, R. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes. ISME J. 6, 1250–1259 (2012).
Krasowska, K. & Heimowska, A. Degradability of polylactide in natural aqueous environments. Water 15, 198 (2023).
Rodrigues, C. A., Tofanello, A., Nantes, I. L. & Rosa, D. S. Biological oxidative mechanisms for degradation of poly(lactic acid) blended with thermoplastic starch. ACS Sustain. Chem. Eng. 3, 2756–2766 (2015).
Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).
Manea, E. et al. Viral infections boost prokaryotic biomass production and organic C cycling in hadal trench sediments. Front. Microbiol. 10, 1952 (2019).
Urbanek, A. K., Rymowicz, W. & Mirończuk, A. M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 102, 7669–7678 (2018).
Bubpachat, T., Sombatsompop, N. & Prapagdee, B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym. Degrad. Stab. 152, 75–85 (2018).
Romera-Castillo, C., Mallenco-Fornies, R., Saá-Yánez, M. & Álvarez-Salgado, X. A. Leaching and bioavailability of dissolved organic matter from petrol-based and biodegradable plastics. Mar. Environ. Res. 176, 105607 (2022).
Birnstiel, S., Sebastián, M. & Romera-Castillo, C. Structure and activity of marine bacterial communities responding to plastic leachates. Sci. Total Environ. 834, 155264 (2022).
Rastelli, E. et al. Drivers of bacterial α- and β-diversity patterns and functioning in subsurface hadal sediments. Front. Microbiol. 10, 2609 (2019).
Tong, D. et al. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil. ISME J. 17, 1247–1256 (2023).
Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
Tejedor, E. et al. Recent heatwaves as a prelude to climate extremes in the western Mediterranean region. npj Clim. Atmos. Sci. 7, 218 (2024).
Corinaldesi, C. et al. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Sci. Total Environ. 823, 153701 (2022).
Bird, L. J. et al. Marinobacter: A case study in bioelectrochemical chassis evaluation. Microb. Biotechnol. 16.3, 494–506 (2023).
Zhao, S. et al. Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep-sea sediments. Environ. Microbiol. 25, 2719–2731 (2023).
Handley, K. M. & Lloyd, J. R. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front. Microbiol. 4, 136 (2013).
Branchu, P. et al. Impact of temperature on Marinobacter hydrocarbonoclasticus SP17 morphology and biofilm structure during growth on alkanes. Microbiology 163, 669–677 (2017).
Cheng, J. et al. Relative influence of plastic debris size and shape, chemical composition and phytoplankton-bacteria interactions in driving seawater plastisphere abundance, diversity and activity. Front. Microbiol. 11, 610231 (2021).
Singleton, S. L. et al. Identification of rare microbial colonizers of plastic materials incubated in a coral reef environment. Front. Microbiol. 14, 1259014 (2023).
Chow, J., Perez-Garcia, P., Dierkes, R. & Streit, W. R. Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microb. Biotechnol. 16, 195–217 (2023).
Fang, C. et al. Unveiling the impact of microplastics with distinct polymer types and concentrations on tidal sediment microbiome and nitrogen cycling. J. Hazard. Mater. 472, 134387 (2024).
Capolupo, M. et al. Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. Environ. Pollut. 319, 120951 (2023).
Pivokonsky, M. et al. Insight into the fate of bioplastic and similar plant-based material debris in aquatic environments via continuous monitoring of their leachate composition—release of carbon, metals, and additives. Sci. Total Environ. 949, 174913 (2024).
Corinaldesi, C. et al. High rates of viral lysis stimulate prokaryotic turnover and C recycling in bathypelagic waters of a Ligurian canyon (Mediterranean Sea). Prog. Oceanogr. 171, 70–75 (2019).
Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).
da Costa, V. S. et al. Marine climate indicators in the Adriatic Sea. Front. Clim. 6, 1449633 (2024).
Jasso-Salcedo, A. B. et al. Disintegration of commercial single-use plastics from synthetic and biobased origins and effects on plant growth. Polym. Degrad. Stab. 230, 111071 (2024).
Danovaro, R. Methods for the Study of Deep-sea Sediments, Their Functioning and Biodiversity (CRC Press, 2010).
Gerchakov, S. M. & Hatcher, P. G. Improved technique for analysis of carbohydrates in sediments. Limnol. Oceanogr. 17, 938–943 (1972).
Noble, R. T. & Fuhrman, J. A. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118 (1998).
Socal, G. et al. Metodologie di studio del plancton marino. ISPRA Manuali e Linee Guida 56/2010 (2010).
Dell’Anno, A., Corinaldesi, C., Magagnini, M. & Danovaro, R. Determination of viral production in aquatic sediments using the dilution-based approach. Nat. Protoc. 4, 1013–1022 (2009).
Danovaro, R. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
Callahan, B. Silva taxonomic training data formatted for DADA2 (Silva version 132) (2018).
Montgomery, D. C. Design and Analysis of Experiments (John Wiley & Sons, 2017).
Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proc. SIGCHI Conf. Hum. Factors Comput. Syst. 143–146 (ACM, 2011).
Edgar, R. C. Updating the 97 % identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).
Hughes, J. B. & Hellmann, J. J. The application of rarefaction techniques to molecular inventories of microbial diversity. Methods Enzymol. 397, 292–308 (2005).
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
Liu, C., Cui, Y., Li, X. & Yao, M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).