Curcio, M. & Bradke, F. Axon regeneration in the central nervous system: facing the challenges from the inside. Annu. Rev. Cell Dev. Biol. 34, 495–521 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

He, Z. & Jin, Y. Intrinsic control of axon regeneration. Neuron 90, 437–451 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Fawcett, J. W. The struggle to make CNS axons regenerate: why has it been so difficult? Neurochem. Res. 45, 144–158 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Sharp, D. J., Scott, G. & Leech, R. Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10, 156–166 (2014).

Article 
PubMed 

Google Scholar
 

Bradke, F., Fawcett, J. W. & Spira, M. E. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat. Rev. Neurosci. 13, 183–193 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Schlaepfer, W. W. Calcium-induced degeneration of axoplasm in isolated segments of rat peripheral nerve. Brain Res. 69, 203–215 (1974).

Article 
CAS 
PubMed 

Google Scholar
 

Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D. & Smith, D. H. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci. 21, 1923–1930 (2001).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ziv, N. E. & Spira, M. E. Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range. J. Neurophysiol. 74, 2625–2637 (1995).

Article 
CAS 
PubMed 

Google Scholar
 

Schlaepfer, W. W. & Bunge, R. P. Effects of calcium ion concentration on the degeneration of amputated axons in tissue culture. J. Cell Biol. 59, 456–470 (1973).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ramon y Cajal, S. & May, R. M. Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, 1928).

Li, D., Field, P. M. & Raisman, G. Failure of axon regeneration in postnatal rat entorhinohippocampal slice coculture is due to maturation of the axon, not that of the pathway or target. Eur. J. Neurosci. 7, 1164–1171 (1995).

Article 
CAS 
PubMed 

Google Scholar
 

Tang-Schomer, M. D., Patel, A. R., Baas, P. W. & Smith, D. H. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J. 24, 1401–1410 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Erturk, A., Hellal, F., Enes, J. & Bradke, F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci. 27, 9169–9180 (2007).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Blanquie, O. & Bradke, F. Cytoskeleton dynamics in axon regeneration. Curr. Opin. Neurobiol. 51, 60–69 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Tedeschi, A. et al. ADF/cofilin-mediated actin turnover promotes axon regeneration in the adult CNS. Neuron 103, 1073–1085.e1076 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stern, S. et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron 109, 3436–3455.e9 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Wu, D. et al. Chronic neuronal activation increases dynamic microtubules to enhance functional axon regeneration after dorsal root crush injury. Nat. Commun. 11, 6131 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hellal, F. et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331, 928–931 (2011).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sengottuvel, V., Leibinger, M., Pfreimer, M., Andreadaki, A. & Fischer, D. Taxol facilitates axon regeneration in the mature CNS. J. Neurosci. 31, 2688–2699 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ruschel, J. et al. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348, 347–352 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brunden, K. R. et al. The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies. Pharmacol. Res. 63, 341–351 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Nettles, J. H. et al. The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography. Science 305, 866–869 (2004).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Prota, A. E. et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 339, 587–590 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Howes, S. C. et al. Structural differences between yeast and mammalian microtubules revealed by cryo-EM. J. Cell Biol. 216, 2669–2677 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Perez, E. A. et al. Efficacy and safety of ixabepilone (BMS-247550) in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J. Clin. Oncol. 25, 3407–3414 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Colom, A. et al. A fluorescent membrane tension probe. Nat. Chem. 10, 1118–1125 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Skaliora, I., Adams, R. & Blakemore, C. Morphology and growth patterns of developing thalamocortical axons. J. Neurosci. 20, 3650–3662 (2000).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Goodson, H. V. & Jonasson, E. M. Microtubules and microtubule-associated proteins. Cold Spring Harb. Perspect. Biol. 10, a022608 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chretien, D., Metoz, F., Verde, F., Karsenti, E. & Wade, R. H. Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J. Cell Biol. 117, 1031–1040 (1992).

Article 
CAS 
PubMed 

Google Scholar
 

Mizuno, N. et al. Dynein and kinesin share an overlapping microtubule-binding site. EMBO J. 23, 2459–2467 (2004).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baas, P. W., Rao, A. N., Matamoros, A. J. & Leo, L. Stability properties of neuronal microtubules. Cytoskeleton 73, 442–460 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Moores, C. A. et al. Mechanism of microtubule stabilization by doublecortin. Mol. Cell 14, 833–839 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Tymanskyj, S. R. & Ma, L. MAP7 prevents axonal branch retraction by creating a stable microtubule boundary to rescue polymerization. J. Neurosci. 39, 7118–7131 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Heidemann, S. R., Landers, J. M. & Hamborg, M. A. Polarity orientation of axonal microtubules. J. Cell Biol. 91, 661–665 (1981).

Article 
CAS 
PubMed 

Google Scholar
 

Burton, P. R. & Paige, J. L. Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc. Natl Acad. Sci. USA 78, 3269–3273 (1981).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baas, P. W. & Lin, S. Hooks and comets: the story of microtubule polarity orientation in the neuron. Dev. Neurobiol. 71, 403–418 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, R., LaFrance, B. & Nogales, E. Separating the effects of nucleotide and EB binding on microtubule structure. Proc. Natl Acad. Sci. USA 115, E6191–E6200 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Itzhak, D. N., Tyanova, S., Cox, J. & Borner, G. H. Global, quantitative and dynamic mapping of protein subcellular localization. eLife 5, e16950 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hiller, G. & Weber, K. Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell 14, 795–804 (1978).

Article 
CAS 
PubMed 

Google Scholar
 

Nedozralova, H. et al. In situ cryo-electron tomography reveals local cellular machineries for axon branch development. J. Cell Biol. 221, e202106086 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Myers, K. A. & Baas, P. W. Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array. J. Cell Biol. 178, 1081–1091 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cuveillier, C. et al. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. Sci. Adv. 6, eaaz4344 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chakraborty, S. et al. Cryo-ET suggests tubulin chaperones form a subset of microtubule lumenal particles with a role in maintaining neuronal microtubules. Proc. Natl Acad. Sci. USA 122, e2404017121 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Q., Crevenna, A. H., Kunze, I. & Mizuno, N. Structural basis for the extended CAP-Gly domains of p150(glued) binding to microtubules and the implication for tubulin dynamics. Proc. Natl Acad. Sci. USA 111, 11347–11352 (2014).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ayukawa, R. et al. GTP-dependent formation of straight tubulin oligomers leads to microtubule nucleation. J. Cell Biol. 220, e202007033 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

McIntosh, J. R. et al. Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments. J. Cell Biol. 217, 2691–2708 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991).

Article 
CAS 
PubMed 

Google Scholar
 

Ojeda-Lopez, M. A. et al. Transformation of Taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch. Nat. Mater. 13, 195–203 (2014).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Basnet, N. et al. Direct induction of microtubule branching by microtubule nucleation factor SSNA1. Nat. Cell Biol. 20, 1172–1180 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).

Article 
CAS 
PubMed 

Google Scholar
 

Silver, J., Schwab, M. E. & Popovich, P. G. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb. Perspect. Biol. 7, a020602 (2014).

Article 
PubMed 

Google Scholar
 

Richardson, P. M., McGuinness, U. M. & Aguayo, A. J. Axons from CNS neurons regenerate into PNS grafts. Nature 284, 264–265 (1980).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Liu, K., Tedeschi, A., Park, K. K. & He, Z. Neuronal intrinsic mechanisms of axon regeneration. Annu. Rev. Neurosci. 34, 131–152 (2011).

Article 
PubMed 

Google Scholar
 

Cho, Y., Sloutsky, R., Naegle, K. M. & Cavalli, V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894–908 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rishal, I. & Fainzilber, M. Axon-soma communication in neuronal injury. Nat. Rev. Neurosci. 15, 32–42 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Varadarajan, S. G., Hunyara, J. L., Hamilton, N. R., Kolodkin, A. L. & Huberman, A. D. Central nervous system regeneration. Cell 185, 77–94 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tian, F. et al. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron 110, 2607–2624.e2608 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moeendarbary, E. et al. The soft mechanical signature of glial scars in the central nervous system. Nat. Commun. 8, 14787 (2017).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Giger, R. J., Hollis, E. R. 2nd & Tuszynski, M. H. Guidance molecules in axon regeneration. Cold Spring Harb. Perspect. Biol. 2, a001867 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gallo, V. & Deneen, B. Glial development: the crossroads of regeneration and repair in the CNS. Neuron 83, 283–308 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Farias, G. G., Guardia, C. M., Britt, D. J., Guo, X. & Bonifacino, J. S. Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone. Cell Rep. 13, 1221–1232 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, R. et al. A novel strategy to visualize vesicle-bound kinesins reveals the diversity of kinesin-mediated transport. Traffic 20, 851–866 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dunn, S. et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 121, 1085–1095 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Bodakuntla, S., Magiera, M. M. & Janke, C. Measuring the impact of tubulin posttranslational modifications on axonal transport. Methods Mol. Biol. 2101, 353–370 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).

Article 
PubMed 

Google Scholar
 

Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Grigorieff, N. Frealign: an exploratory tool for single-particle Cryo-EM. Methods Enzymol. 579, 191–226 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, R. & Nogales, E. A new protocol to accurately determine microtubule lattice seam location. J. Struct. Biol. 192, 245–254 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Rusu, M., Starosolski, Z., Wahle, M., Rigort, A. & Wriggers, W. Automated tracing of filaments in 3D electron tomography reconstructions using Sculptor and Situs. J. Struct. Biol. 178, 121–128 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martinez-Sanchez, A. et al. Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nat. Methods 17, 209–216 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Sousbie, T. The persistent cosmic web and its filamentary structure – I. Theory and implementation. Mon. Not. R. Astron. Soc. 414, 350–383 (2011).

Article 
ADS 

Google Scholar
 

Comaniciu, D. & Meer, P. Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002).

Article 
ADS 

Google Scholar
 

Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, L14–L16 (2008).

Article 
CAS 
PubMed 

Google Scholar