Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

Article 

Google Scholar
 

Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy effective mass and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

Article 

Google Scholar
 

Pisoni, R. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

Article 

Google Scholar
 

Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

Article 

Google Scholar
 

Chen, L. et al. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 9, 8368–8375 (2015).

Article 

Google Scholar
 

Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

Article 

Google Scholar
 

Wang, J. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022).

Article 

Google Scholar
 

Fu, J.-H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).

Article 

Google Scholar
 

Zhu, H. et al. Step engineering for nucleation and domain orientation control in WSe2 epitaxy on c-plane sapphire. Nat. Nanotechnol. 18, 1295–1302 (2023).

Article 

Google Scholar
 

Zheng, P. et al. Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nat. Commun. 14, 592 (2023).

Article 

Google Scholar
 

Li, L. et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 15, 1825 (2024).

Article 

Google Scholar
 

Liu, C. et al. Understanding epitaxial growth of two-dimensional materials and their homostructures. Nat. Nanotechnol. 19, 907–918 (2024).

Article 

Google Scholar
 

Hickey, D. R. et al. Illuminating invisible grain boundaries in coalesced single-orientation WS2 monolayer films. Nano Lett. 21, 6487–6495 (2021).

Article 

Google Scholar
 

Chubarov, M. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

Article 

Google Scholar
 

Seo, S.-Y. et al. Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 4, 38–44 (2021).

Article 

Google Scholar
 

Seo, S.-Y. et al. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 1, 512–517 (2018).

Article 

Google Scholar
 

Seo, S.-Y. et al. Identification of point defects in atomically thin transition-metal dichalcogenide semiconductors as active dopants. Nano Lett. 21, 3341–3354 (2021).

Article 

Google Scholar
 

Ahn, H. et al. Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors. Nat. Nanotech. 19, 955–961 (2024).

Article 

Google Scholar
 

Deng, B. et al. Epitaxially defined Luttinger liquids on MoS2 bicrystals. Phys. Rev. Lett. 134, 046301 (2025).

Article 

Google Scholar
 

Jin, G. et al. Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth. Sci. Adv. 5, eaaw3180 (2019).

Article 

Google Scholar
 

Heo, H. et al. Frank–van der Merwe growth versus Volmer–Weber growth in successive stacking of a few‐layer Bi2Te3/Sb2Te3 by van der Waals heteroepitaxy: the critical roles of finite lattice‐mismatch with seed substrates. Adv. Electron. Mater. 3, https://doi.org/10.1002/aelm.201600375 (2017).

Jin, G. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 16, 1092–1098 (2021).

Article 

Google Scholar
 

Kyuno, K. & Ehrlich, G. Step-edge barriers on Pt(111): an atomistic view. Phys. Rev. Lett. 81, 5592–5595 (1998).

Article 

Google Scholar
 

Choi, M.-Y. et al. Thermodynamically driven tilt grain boundaries of monolayer crystals using catalytic liquid alloys. Nano Lett. 23, 4516–4523 (2023).

Article 

Google Scholar
 

Brewer, L. & Lamoreaux, R. H. The Mo-S system (Molybdenum-Sulfur). Bull. Alloy Phase Diagr. 1, 93–95 (1980).

Article 

Google Scholar
 

Hoang, A. T. et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18, 1439–1447 (2023).

Article 

Google Scholar
 

Fu, D. et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139, 9392–9400 (2017).

Article 

Google Scholar
 

Zhang, Z. & Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).

Article 

Google Scholar
 

Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

Article 

Google Scholar
 

Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

Article 

Google Scholar
 

Lim, Y.-F. et al. Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier ACS nano. ACS Nano 12, 1339–1349 (2018).

Article 

Google Scholar
 

Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

Article 

Google Scholar
 

Jain, A. et al. One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19, 6914–6923 (2019).

Article 

Google Scholar
 

Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).


Google Scholar
 

Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1995).

Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n -type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

Article 

Google Scholar
 

Stern, F. & Howard, W. E. Properties of semiconductor surface inversion layers in the electric quantum limit physical review. Phys. Rev. 163, 816–835 (1967).

Article 

Google Scholar
 

Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

Article 

Google Scholar
 

Sarma, S. D., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

Article 

Google Scholar
 

Schmidt, S. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14, 1909–1913 (2014).

Article 

Google Scholar
 

Hikami, S., Larkin, A. I. & Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63, 707–710 (1980).

Article 

Google Scholar
 

Schmidt, H. et al. Quantum transport and observation of Dyakonov–Perel spin-orbit scattering in monolayer MoS2. Phy. Rev. Lett. 116, 046803 (2016).

Article 

Google Scholar
 

Papadopoulos, N., Watanabe, K., Taniguchi, T., van der Zant, H. S. J. & Steele, G. A. Weak localization in boron nitride encapsulated bilayer MoS2. Phys. Rev. B 99, 115414 (2019).

Article 

Google Scholar
 

Qu, T. et al. Observation of weak localization in dual-gated bilayer MoS2. Phys. Rev. Res. 6, 013216 (2024).

Article 

Google Scholar
 

Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

Article 

Google Scholar
 

Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

Article 

Google Scholar
 

Park, J. H. et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 3, e1701661 (2017).

Article 

Google Scholar
 

Zhao, Y. et al. Electrical spectroscopy of defect states and their hybridization in monolayer MoS2. Nat. Commun. 14, 44 (2023).

Article 

Google Scholar
 

Wang, Y., Sarkar, S., Yan, H. & Chhowalla, M. Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides. Nat. Electron. 7, 638–645 (2024).

Article 

Google Scholar