Lieb, E. H. & Wu, F. Y. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20, 1445–1448 (1968).

Article 
ADS 

Google Scholar
 

Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996).

Article 
ADS 
MathSciNet 

Google Scholar
 

Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).

Article 
ADS 
MathSciNet 

Google Scholar
 

Huang, E. W., Mendl, C. B., Jiang, H.-C., Moritz, B. & Devereaux, T. P. Stripe order from the perspective of the Hubbard model. npj Quantum Mater. 3, 22 (2018).

Article 
ADS 

Google Scholar
 

Qin, M. et al. Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020).


Google Scholar
 

Qin, M., Shi, H. & Zhang, S. Benchmark study of the two-dimensional Hubbard model with auxiliary-field quantum Monte Carlo method. Phys. Rev. B 94, 085103 (2016).

Article 
ADS 

Google Scholar
 

LeBlanc, J. P. F. et al. Solutions of the two-dimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X 5, 041041 (2015).


Google Scholar
 

Jiang, H.-C. & Kivelson, S. A. Stripe order enhanced superconductivity in the Hubbard model. Proc. Natl Acad. Sci. USA 119, e2109406119 (2022).

Article 

Google Scholar
 

Xu, W., Haule, K. & Kotliar, G. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective. Phys. Rev. Lett. 111, 036401 (2013).

Article 
ADS 

Google Scholar
 

Deng, X. et al. How bad metals turn good: spectroscopic signatures of resilient quasiparticles. Phys. Rev. Lett. 110, 086401 (2013).

Article 
ADS 

Google Scholar
 

Park, H., Haule, K. & Kotliar, G. Cluster dynamical mean field theory of the Mott transition. Phys. Rev. Lett. 101, 186403 (2008).

Article 
ADS 

Google Scholar
 

Kancharla, S. S. et al. Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators. Phys. Rev. B 77, 184516 (2008).

Article 
ADS 

Google Scholar
 

Maier, T., Jarrell, M., Pruschke, T. & Hettler, M. H. Quantum cluster theories. Rev. Mod. Phys. 77, 1027–1080 (2005).

Article 
ADS 

Google Scholar
 

Mai, P., Karakuzu, S., Balduzzi, G., Johnston, S. & Maier, T. A. Intertwined spin, charge, and pair correlations in the two-dimensional Hubbard model in the thermodynamic limit. Proc. Natl Acad. Sci. USA 119, e2112806119 (2022).

Article 
MathSciNet 

Google Scholar
 

Mai, P. et al. Robust charge-density-wave correlations in the electron-doped single-band Hubbard model. Nat. Commun. 14, 2889 (2023).

Article 
ADS 

Google Scholar
 

Werner, P., Gull, E., Parcollet, O. & Millis, A. J. Momentum-selective metal-insulator transition in the two-dimensional Hubbard model: an 8-site dynamical cluster approximation study. Phys. Rev. B 80, 045120 (2009).

Article 
ADS 

Google Scholar
 

Rohringer, G. et al. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory. Rev. Mod. Phys. 90, 025003 (2018).

Article 
ADS 
MathSciNet 

Google Scholar
 

Schäfer, T., Toschi, A. & Held, K. Dynamical vertex approximation for the two-dimensional Hubbard model. J. Magn. Magn. Mater. 400, 107–111 (2016).

Article 
ADS 

Google Scholar
 

Schäfer, T. et al. Tracking the footprints of spin fluctuations: a multimethod, multimessenger study of the two-dimensional Hubbard model. Phys. Rev. X 11, 011058 (2021).


Google Scholar
 

Rubtsov, A. N., Katsnelson, M. I. & Lichtenstein, A. I. Dual fermion approach to nonlocal correlations in the Hubbard model. Phys. Rev. B 77, 033101 (2008).

Article 
ADS 

Google Scholar
 

Stanescu, T. D. & Kotliar, G. Fermi arcs and hidden zeros of the green function in the pseudogap state. Phys. Rev. B 74, 125110 (2006).

Article 
ADS 

Google Scholar
 

Ferrero, M. et al. Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space. Phys. Rev. B 80, 064501 (2009).

Article 
ADS 

Google Scholar
 

Wu, W. et al. Pseudogap and Fermi-surface topology in the two-dimensional Hubbard model. Phys. Rev. X 8, 021048 (2018).


Google Scholar
 

Gull, E., Parcollet, O. & Millis, A. J. Superconductivity and the pseudogap in the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).

Article 
ADS 

Google Scholar
 

Huang, E. W., Sheppard, R., Moritz, B. & Devereaux, T. P. Strange metallicity in the doped Hubbard model. Science 366, 987–990 (2019).

Article 
ADS 

Google Scholar
 

Brown, P. T. et al. Bad metallic transport in a cold atom Fermi-Hubbard system. Science 363, 379–382 (2019).

Article 
ADS 

Google Scholar
 

Hatsugai, Y. & Kohmoto, M. Exactly solvable model of correlated lattice electrons in any dimensions. J. Phys. Soc. Jpn 61, 2056–2069 (1992).

Article 
ADS 
MathSciNet 

Google Scholar
 

Phillips, P. W., Yeo, L. & Huang, E. W. Exact theory for superconductivity in a doped Mott insulator. Nat. Phys. 16, 1175–1180 (2020).

Article 

Google Scholar
 

Huang, E. W., Nave, G. L. & Phillips, P. W. Discrete symmetry breaking defines the Mott quartic fixed point. Nat. Phys.s 18, 511–516 (2022).

Article 

Google Scholar
 

Zhao, M., Yang, W.-W. & Zhong, Y. Hatsugai-Kohmoto models: exactly solvable playground for Mottness and non-Fermi liquid. J. Phys.: Condens. Matter 37, 183005 (2025).

ADS 

Google Scholar
 

Skolimowski, J. Real-space analysis of Hatsugai-Kohmoto interaction. Phys. Rev. B 109, 165129 (2024).

Article 
ADS 

Google Scholar
 

Ma, Y. et al. Charge susceptibility and Kubo response in Hatsugai-Kohmoto-related models. Phys. Rev. B 112, 045109 (2025).

Article 
ADS 

Google Scholar
 

White, S. R. et al. Numerical study of the two-dimensional Hubbard model. Phys. Rev. B 40, 506–516 (1989).

Article 
ADS 

Google Scholar
 

Seki, K. & Yunoki, S. Brillouin-zone integration scheme for many-body density of states: tetrahedron method combined with cluster perturbation theory. Phys. Rev. B 93, 245115 (2016).

Article 
ADS 

Google Scholar
 

Huang, E. W., Ding, S., Liu, J. & Wang, Y. Determinantal quantum Monte Carlo solver for cluster perturbation theory. Phys. Rev. Res. 4, L042015 (2022).

Article 

Google Scholar
 

Meinders, M. B. J., Eskes, H. & Sawatzky, G. A. Spectral-weight transfer: breakdown of low-energy-scale sum rules in correlated systems. Phys. Rev. B 48, 3916–3926 (1993).

Article 
ADS 

Google Scholar
 

Eskes, H., Meinders, M. B. J. & Sawatzky, G. A. Anomalous transfer of spectral weight in doped strongly correlated systems. Phys. Rev. Lett. 67, 1035–1038 (1991).

Article 
ADS 

Google Scholar
 

Duffy, D. & Moreo, A. Specific heat of the two-dimensional Hubbard model. Phys. Rev. B 55, 12918–12924 (1997).

Article 
ADS 

Google Scholar
 

Wang, W. O., Ding, J. K., Moritz, B., Huang, E. W. & Devereaux, T. P. Magnon heat transport in a two-dimensional Mott insulator. Phys. Rev. B 105, L161103 (2022).

Article 
ADS 

Google Scholar
 

Zhao, J., La Nave, G. & Phillips, P. W. Proof of a stable fixed point for strongly correlated electron matter. Phys. Rev. B 108, 165135 (2023).

Article 
ADS 

Google Scholar
 

Manning-Coe, D. & Bradlyn, B. Ground state stability, symmetry, and degeneracy in Mott insulators with long-range interactions. Phys. Rev. B 108, 165136 (2023).

Article 
ADS 

Google Scholar
 

Mai, P., Feldman, B. E. & Phillips, P. W. Topological Mott insulator at quarter filling in the interacting Haldane model. Phys. Rev. Res. 5, 013162 (2023).

Article 

Google Scholar
 

Mai, P., Zhao, J., Feldman, B. E. & Phillips, P. W. 1/4 is the new 1/2 when topology is intertwined with Mottness. Nat. Commun. 14, 5999 (2023).

Article 
ADS 

Google Scholar
 

Jabłonowski, K., Skolimowski, J., Brzezicki, W., Byczuk, K. & Wysokiński, M. M. Topological Mott insulator in the odd-integer filled Anderson lattice model with Hatsugai-Kohmoto interactions. Phys. Rev. B 108, 195145 (2023).

Article 
ADS 

Google Scholar
 

Zhong, Y. Solvable periodic anderson model with infinite-range Hatsugai-Kohmoto interaction: ground-states and beyond. Phys. Rev. B 106, 155119 (2022).

Article 
ADS 

Google Scholar
 

Setty, C. et al. Symmetry constraints and spectral crossing in a Mott insulator with Green’s function zeros. Phys. Rev. Res. 6, L032018 (2024).

Article 

Google Scholar
 

Huang, E. W. Strong-coupling mechanism of the pseudogap in small Hubbard clusters. Preprint at https://arxiv.org/abs/2010.12601 (2020).

Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

Article 
ADS 

Google Scholar
 

Qin, M., Sch’´afer, T., Andergassen, S., Corboz, P. & Gull, E. The Hubbard model: a computational perspective. Annu. Rev. Condens. Matter Phys. 13, 275–302 (2022).

Article 
ADS 

Google Scholar
 

Schumm, G., Zhang, S. & Sandvik, A. W. Single-particle dispersion and density of states of the half-filled 2D Hubbard model. Phys. Rev. B 112, 085109 (2025).

Article 
ADS 

Google Scholar
 

Harris, A. B. & Lange, R. V. Single-particle excitations in narrow energy bands. Phys. Rev. 157, 295–314 (1967).

Article 
ADS 

Google Scholar
 

Phillips, P. Colloquium: identifying the propagating charge modes in doped Mott insulators. Rev. Mod. Phys. 82, 1719–1742 (2010).

Article 
ADS 

Google Scholar
 

Tenkila, G., Zhao, J. & Phillips, P. W. Dynamical spectral weight transfer in the orbital Hatsugai-Kohmoto model. Phys. Rev. B 111, 045126 (2025).

Article 
ADS 

Google Scholar
 

Worm, P., Reitner, M., Held, K. & Toschi, A. Fermi and Luttinger arcs: two concepts, realized on one surface. Phys. Rev. Lett. 133, 166501 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Vollhardt, D. Characteristic crossing points in specific heat curves of correlated systems. Phys. Rev. Lett. 78, 1307–1310 (1997).

Article 
ADS 

Google Scholar
 

Mai, P., Zhao, J., Maier, T. A., Bradlyn, B. & Phillips, P. W. Topological phase transition without single particle gap closing in strongly correlated systems. Phys. Rev. B 110, 075105 (2024).

Article 
ADS 

Google Scholar
 

Zhao, J., Mai, P., Bradlyn, B. & Phillips, P. Failure of topological invariants in strongly correlated matter. Phys. Rev. Lett. 131, 106601 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Mott, N. F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. Sec. A 62, 416 (1949).

Article 
ADS 

Google Scholar
 

Guerci, D., Sangiovanni, G., Millis, A. J. & Fabrizio, M. Electrical transport in the Hatsugai-Kohmoto model. Phys. Rev. B 111, 075124 (2025).

Article 
ADS 

Google Scholar
 

White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

Article 
ADS 

Google Scholar
 

White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345–10356 (1993).

Article 
ADS 

Google Scholar
 

Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45, 255 (1950).

Article 
MathSciNet 

Google Scholar
 

Towns, J. et al. Xsede: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

Article 

Google Scholar
 

Mai, P. Data for Mai etal Twisting Hubbard into the Momentum-Mixing Hatsugai-Kohmoto Model. Zenodo https://doi.org/10.5281/zenodo.17096693 (2025).