Zhang, X. et al. Guiding of visible photons at the ångström thickness limit. Nat. Nanotechnol. 14, 844–850 (2019).

Article 
ADS 

Google Scholar
 

Sung, J. et al. Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photonics 16, 792–797 (2022).

Article 
ADS 

Google Scholar
 

Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

Article 
ADS 

Google Scholar
 

Ye, Y. et al. Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015).

Article 
ADS 

Google Scholar
 

Munkhbat, B. et al. Transition metal dichalcogenide metamaterials with atomic precision. Nat. Commun. 11, 4604 (2020).

Article 
ADS 

Google Scholar
 

Lin, H. et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci. Appl. 9, 137 (2020).

Article 
ADS 

Google Scholar
 

Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).

Article 
ADS 

Google Scholar
 

Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & Imamoğlu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).

Article 
ADS 

Google Scholar
 

Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

Article 
ADS 

Google Scholar
 

Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

Article 

Google Scholar
 

Klembt, S. et al. Exciton–polariton topological insulator. Nature 562, 552–556 (2018).

Article 
ADS 

Google Scholar
 

Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton–polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018).

Article 
ADS 

Google Scholar
 

Laitz, M. et al. Uncovering temperature-dependent exciton–polariton relaxation mechanisms in hybrid organic-inorganic perovskites. Nat. Commun. 14, 2426 (2023).

Article 
ADS 

Google Scholar
 

Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).

Article 

Google Scholar
 

Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

Article 
ADS 

Google Scholar
 

Gibbs, H. M., Khitrova, G. & Koch, S. W. Exciton–polariton light–semiconductor coupling effects. Nat. Photonics 5, 273–273 (2011).

Article 
ADS 

Google Scholar
 

Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photonics 9, 30–34 (2015).

Article 
ADS 

Google Scholar
 

Dirnberger, F. et al. Spin-correlated exciton–polaritons in a van der Waals magnet. Nat. Nanotechnol. 17, 1060–1064 (2022).

Article 
ADS 

Google Scholar
 

Li, Q. et al. Two-dimensional magnetic exciton polariton with strongly coupled atomic and photonic anisotropies. Phys. Rev. Lett. 133, 266901 (2024).

Article 

Google Scholar
 

Maggiolini, E. et al. Strongly enhanced light–matter coupling of monolayer WS2 from a bound state in the continuum. Nat. Mater. 22, 964–969 (2023).

Article 
ADS 

Google Scholar
 

Weber, T. et al. Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater. 22, 970–976 (2023).

Article 
ADS 

Google Scholar
 

Dirnberger, F. et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).

Article 
ADS 

Google Scholar
 

Jarc, G. et al. Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2. Nature 622, 487–492 (2023).

Article 
ADS 

Google Scholar
 

Latini, S. et al. The ferroelectric photo ground state of SrTiO3: cavity materials engineering. Proc. Natl Acad. Sci. USA 118, e2105618118 (2021).

Article 

Google Scholar
 

Viñas Boström, E., Sriram, A., Claassen, M. & Rubio, A. Controlling the magnetic state of the proximate quantum spin liquid α-RuCl3 with an optical cavity. npj Comput. Mater. 9, 202 (2023).

Article 
ADS 

Google Scholar
 

Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

Article 
ADS 

Google Scholar
 

Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

Article 
ADS 

Google Scholar
 

Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

Article 
ADS 

Google Scholar
 

Bagani, K. et al. Imaging strain-controlled magnetic reversal in thin CrSBr. Nano Lett. 24, 13068–13074 (2024).


Google Scholar
 

Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 17, 256–261 (2022).

Article 
ADS 

Google Scholar
 

Pawbake, A. et al. Magneto-optical sensing of the pressure driven magnetic ground states in bulk CrSBr. Nano Lett. 23, 9587–9593 (2023).

Article 
ADS 

Google Scholar
 

Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

Article 
ADS 

Google Scholar
 

Cham, T. M. J. et al. Anisotropic gigahertz antiferromagnetic resonances of the easy-axis van der Waals antiferromagnet CrSBr. Nano Lett. 22, 6716–6723 (2022).

Article 
ADS 

Google Scholar
 

Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

Article 
ADS 

Google Scholar
 

Ziebel, M. E. et al. CrSBr: an air-stable, two-dimensional magnetic semiconductor. Nano Lett. 24, 4319–4329 (2024).

Article 
ADS 

Google Scholar
 

Rizzo, D. J. et al. Visualizing atomically layered magnetism in CrSBr. Adv. Mater. 34, 2201000 (2022).

Article 

Google Scholar
 

Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316–5328 (2023).

Article 

Google Scholar
 

Nessi, L., Occhialini, C. A., Demir, A. K., Powalla, L. & Comin, R. Magnetic field tunable polaritons in the ultrastrong coupling regime in CrSBr. ACS Nano 18, 34235–34243 (2024).

Article 

Google Scholar
 

Datta, B., Adak, P.C., Yu, S. et al. Magnon-mediated exciton–exciton interaction in a van der Waals antiferromagnet. Nat. Mater. https://doi.org/10.1038/s41563-025-02183-0 (2025).

Shi, J. et al. Giant magneto-exciton coupling in 2D van der Waals CrSBr. Preprint at https://arxiv.org/abs/2409.18437v1 (2024).

Barcons Ruiz, D. et al. Engineering high quality graphene superlattices via ion milled ultra-thin etching masks. Nat. Commun. 13, 6926 (2022).

Article 
ADS 

Google Scholar
 

Demir, A. K. et al. Transferable optical enhancement nanostructures by gapless stencil lithography. Nano Lett. 24, 9882–9888 (2024).

Article 

Google Scholar
 

Liu, V. & Fan, S. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012).

Article 
MathSciNet 
ADS 
MATH 

Google Scholar
 

Wang, T. et al. Magnetically-dressed CrSBr exciton–polaritons in ultrastrong coupling regime. Nat. Commun. 14, 5966 (2023).

Article 
ADS 

Google Scholar
 

Ruta, F. L. et al. Hyperbolic exciton polaritons in a van der Waals magnet. Nat. Commun. 14, 8261 (2023).

Article 
ADS 

Google Scholar
 

Suárez-Forero, D. G. et al. Chiral flat-band optical cavity with atomically thin mirrors. Sci. Adv. 10, eadr5904 (2024).

Article 

Google Scholar
 

Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

Article 
ADS 

Google Scholar
 

Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

Article 
ADS 

Google Scholar
 

Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

Article 
ADS 

Google Scholar
 

Cerjan, A. et al. Observation of bound states in the continuum embedded in symmetry bandgaps. Sci. Adv. 7, eabk1117 (2021).

Article 
ADS 

Google Scholar
 

Vaidya, S., Benalcazar, W. A., Cerjan, A. & Rechtsman, M. C. Point-defect-localized bound states in the continuum in photonic crystals and structured fibers. Phys. Rev. Lett. 127, 023605 (2021).

Article 
ADS 

Google Scholar
 

Zhang, T. et al. Magnetism and optical anisotropy in van der waals antiferromagnetic insulator CrOCl. ACS Nano 13, 11353–11362 (2019).

Article 

Google Scholar
 

Gu, P. et al. Photoluminescent quantum interference in a van der Waals magnet preserved by symmetry breaking. ACS Nano 14, 1003–1010 (2020).

Article 

Google Scholar
 

Guo, Q. et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023).

Article 
ADS 

Google Scholar
 

Guo, Q. et al. Colossal in-plane optical anisotropy in a two-dimensional van der Waals crystal. Nat. Photonics 18, 1170–1175 (2024).

Article 

Google Scholar
 

Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

Article 
ADS 

Google Scholar
 

Tabataba-Vakili, F. et al. Doping-control of excitons and magnetism in few-layer CrSBr. Nat. Commun. 15, 4735 (2024).

Article 

Google Scholar
 

Ergoktas, M. S. et al. Localized thermal emission from topological interfaces. Science 384, 1122–1126 (2024).

Article 
ADS 

Google Scholar
 

He, L., Wu, J., Jin, J., Mele, E. J. & Zhen, B. Polaritonic Chern insulators in monolayer semiconductors. Phys. Rev. Lett. 130, 043801 (2023).

Article 
ADS 

Google Scholar
 

Uemura, T. et al. Photonic topological phase transition induced by material phase transition. Sci. Adv. 10, eadp7779 (2024).

Article 

Google Scholar
 

Guddala, S. et al. Topological phonon–polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

Article 
ADS 

Google Scholar
 

Li, M. et al. Experimental observation of topological Z2 exciton–polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).

Article 
ADS 

Google Scholar
 

Liu, W. et al. Generation of helical topological exciton–polaritons. Science 370, 600–604 (2020).

Article 
MathSciNet 

Google Scholar