Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kim, S., Kubicek, R. & Bergbreiter, S. 3D-printed electrostatic microactuators for flexible microsystems. Adv. Funct. Mater. 33, 202304991 (2023).

Article 

Google Scholar
 

Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Xu, S. et al. 3D-printed micro ion trap technology for quantum information applications. Nature 645, 362–368 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Qin, C. et al. High efficiency laser-driven proton sources using 3D-printed micro-structure. Commun. Phys. 5, 124 (2022).

Article 
CAS 

Google Scholar
 

Jiang, L. J., Campbell, J. H., Lu, Y. F., Bernat, T. & Petta, N. Direct writing target structures by two-photon polymerization. Fusion Sci. Technol. 70, 295–309 (2017).

Article 
ADS 

Google Scholar
 

Vidler, C. et al. Dynamic interface printing. Nature 634, 1096–1102 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jung, W. et al. Three-dimensional nanoprinting via charged aerosol jets. Nature 592, 54–59 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kronenfeld, J. M., Rother, L., Saccone, M. A., Dulay, M. T. & DeSimone, J. M. Roll-to-roll, high-resolution 3D printing of shape-specific particles. Nature 627, 306–312 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xia, X. et al. Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhou, W. et al. 3D polycatenated architected materials. Science 387, 269–277 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Han, F. et al. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 378, 1325–1331 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Somers, P. et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light Sci. Appl. 10, 199 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Ouyang, W. et al. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, L. et al. High-throughput two-photon 3D printing enabled by holographic multi-foci high-speed scanning. Nano Lett. 24, 2671–2679 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kiefer, P. A multi-photon (7 × 7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array. Light Adv. Manuf. 4, 28–41 (2024).


Google Scholar
 

Yang, S. et al. Parallel two-photon lithography achieving uniform sub-200 nm features with thousands of individually controlled foci. Opt. Express 31, 14174–14184 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Jiao, B. et al. Acousto-optic scanning spatial-switching multiphoton lithography. Int. J. Extreme Manuf. 5, 035008 (2023).

CAS 

Google Scholar
 

Arnoux, C. et al. Understanding and overcoming proximity effects in multi-spot two-photon direct laser writing. Add. Manuf. 49, 102491 (2022).


Google Scholar
 

Wang, X. et al. 3D nanolithography via holographic multi-focus metalens. Laser Photonics Rev. 18, 2400181 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Walsh, M. E., Zhang, F., Menon, R. & Smith, H. I. in Nanolithography (ed. Feldman, M.) 179–193 (Woodhead Publishing, 2014).

Sugioka, K. & Cheng, Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev. 1, 041303 (2014).

Article 
ADS 

Google Scholar
 

Gu, S., Chen, B., Xu, X., Han, F. & Chen, S. C. 3D nanofabrication via directed material assembly: mechanism, method, and future. Adv. Mater. 37, 2312915 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

Article 
PubMed 

Google Scholar
 

Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Fu, J. et al. Supercritical metalens at h-line for high-resolution direct laser writing. Opto-Electron. Sci. 3, 230035 (2024).

Article 
CAS 

Google Scholar
 

Chen, B. et al. 4H-SiC metalens: mitigating thermal drift effect in high-power laser irradiation. Adv. Mater. 37, 2412414 (2025).

Article 
CAS 

Google Scholar
 

Zhou, Y., Mao, C., Gershnabel, E., Chen, M. & Fan, J. A. Large-area, high-numerical-aperture, freeform metasurfaces. Laser Photonics Rev. 18, 2300988 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, L., Liu, J., Gong, W., Jiang, H. & Liu, S. Diffraction based single pulse measurement of air ionization dynamics induced by femtosecond laser. Opt. Express 29, 18601–18610 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7, 22–44 (2013).

Article 
ADS 
CAS 

Google Scholar
 

3DBenchy. https://www.3dbenchy.com/ (2024).

Zhang, P. et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials. Compos. Struct. 277, 114606 (2021).

Article 

Google Scholar
 

Liu, Y. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, P. et al. Direct-print 3D electrodes for large-scale, high-density, and customizable neural interfaces. Adv. Sci. 12, 2408602 (2025).

Article 
CAS 

Google Scholar
 

Dehaeck, S., Scheid, B. & Lambert, P. Adaptive stitching for meso-scale printing with two-photon lithography. Addit. Manuf. 21, 589–597 (2018).

CAS 

Google Scholar
 

Dudukovic, N. A. et al. Cellular fluidics. Nature 595, 58–65 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gibson, L. J. & Ashby, M. F. Cellular Solids 2nd edn (Cambridge Univ. Press, 2014).

Patel, Z. S., Alrashed, A. O., Dwivedi, K., Salviato, M. & Meza, L. R. Rethinking ductility—a study into the size-affected fracture of additively manufactured polymers. Addit. Manuf. 84, 104113 (2024).

CAS 

Google Scholar
 

Dai, V. & Zakhor, A. in Emerging Lithographic Technologies IV Vol. 3997, 467–477 (SPIE, 2000).

Liu, H.-I., Dai, V., Zakhor, A. & Nikolic, B. in Emerging Lithographic Technologies X Vol. 6151, 632–645 (SPIE, 2006).

Nanoscribe Photonic Professional GT2. https://www.nanoscribe.com/en/products/photonic-professional-gt2/ (2025).

Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photon. 16, 784–791 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photon. 15, 932–938 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Hugonin, J. P. & Lalanne, P. RETICOLO software for grating analysis. Preprint at https://arxiv.org/abs/2101.00901 (2025).

Holzwarth, C., Barwicz, T. & Smith, H. I. Optimization of hydrogen silsesquioxane for photonic applications. J. Vac. Sci. Technol. B 25, 2658–2661 (2007).

Article 
CAS 

Google Scholar
 

Kawamoto, R., Andò, E., Viggiani, G. & Andrade, J. E. Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016).

Article 
ADS 
MathSciNet 

Google Scholar
 

Choi, W. J. et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 18, 820–826 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Choi, W. J., Lee, S. H., Cha, M. & Kotov, N. A. Chiral kirigami for bend-tolerant reconfigurable hologram with continuously variable chirality measures. Adv. Mater. 36, e2401131 (2024).

Article 
PubMed 

Google Scholar
 

Choi, W. et al. Helical photonic metamaterials for encrypted chiral holograms. Adv. Sci. 12, e07931 (2025).

Article 
CAS 

Google Scholar