Kawata, S., Sun, H. B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).
Kim, S., Kubicek, R. & Bergbreiter, S. 3D-printed electrostatic microactuators for flexible microsystems. Adv. Funct. Mater. 33, 202304991 (2023).
Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).
Xu, S. et al. 3D-printed micro ion trap technology for quantum information applications. Nature 645, 362–368 (2025).
Qin, C. et al. High efficiency laser-driven proton sources using 3D-printed micro-structure. Commun. Phys. 5, 124 (2022).
Jiang, L. J., Campbell, J. H., Lu, Y. F., Bernat, T. & Petta, N. Direct writing target structures by two-photon polymerization. Fusion Sci. Technol. 70, 295–309 (2017).
Vidler, C. et al. Dynamic interface printing. Nature 634, 1096–1102 (2024).
Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).
Jung, W. et al. Three-dimensional nanoprinting via charged aerosol jets. Nature 592, 54–59 (2021).
Kronenfeld, J. M., Rother, L., Saccone, M. A., Dulay, M. T. & DeSimone, J. M. Roll-to-roll, high-resolution 3D printing of shape-specific particles. Nature 627, 306–312 (2024).
Xia, X. et al. Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019).
Zhou, W. et al. 3D polycatenated architected materials. Science 387, 269–277 (2025).
Han, F. et al. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 378, 1325–1331 (2022).
Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).
Somers, P. et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light Sci. Appl. 10, 199 (2021).
Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).
Ouyang, W. et al. Ultrafast 3D nanofabrication via digital holography. Nat. Commun. 14, 1716 (2023).
Zhang, L. et al. High-throughput two-photon 3D printing enabled by holographic multi-foci high-speed scanning. Nano Lett. 24, 2671–2679 (2024).
Kiefer, P. A multi-photon (7 × 7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array. Light Adv. Manuf. 4, 28–41 (2024).
Yang, S. et al. Parallel two-photon lithography achieving uniform sub-200 nm features with thousands of individually controlled foci. Opt. Express 31, 14174–14184 (2023).
Jiao, B. et al. Acousto-optic scanning spatial-switching multiphoton lithography. Int. J. Extreme Manuf. 5, 035008 (2023).
Arnoux, C. et al. Understanding and overcoming proximity effects in multi-spot two-photon direct laser writing. Add. Manuf. 49, 102491 (2022).
Wang, X. et al. 3D nanolithography via holographic multi-focus metalens. Laser Photonics Rev. 18, 2400181 (2024).
Walsh, M. E., Zhang, F., Menon, R. & Smith, H. I. in Nanolithography (ed. Feldman, M.) 179–193 (Woodhead Publishing, 2014).
Sugioka, K. & Cheng, Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev. 1, 041303 (2014).
Gu, S., Chen, B., Xu, X., Han, F. & Chen, S. C. 3D nanofabrication via directed material assembly: mechanism, method, and future. Adv. Mater. 37, 2312915 (2025).
Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).
Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).
Fu, J. et al. Supercritical metalens at h-line for high-resolution direct laser writing. Opto-Electron. Sci. 3, 230035 (2024).
Chen, B. et al. 4H-SiC metalens: mitigating thermal drift effect in high-power laser irradiation. Adv. Mater. 37, 2412414 (2025).
Zhou, Y., Mao, C., Gershnabel, E., Chen, M. & Fan, J. A. Large-area, high-numerical-aperture, freeform metasurfaces. Laser Photonics Rev. 18, 2300988 (2024).
Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).
Zhang, L., Liu, J., Gong, W., Jiang, H. & Liu, S. Diffraction based single pulse measurement of air ionization dynamics induced by femtosecond laser. Opt. Express 29, 18601–18610 (2021).
Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7, 22–44 (2013).
3DBenchy. https://www.3dbenchy.com/ (2024).
Zhang, P. et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials. Compos. Struct. 277, 114606 (2021).
Liu, Y. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019).
Wang, P. et al. Direct-print 3D electrodes for large-scale, high-density, and customizable neural interfaces. Adv. Sci. 12, 2408602 (2025).
Dehaeck, S., Scheid, B. & Lambert, P. Adaptive stitching for meso-scale printing with two-photon lithography. Addit. Manuf. 21, 589–597 (2018).
Dudukovic, N. A. et al. Cellular fluidics. Nature 595, 58–65 (2021).
Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023).
Gibson, L. J. & Ashby, M. F. Cellular Solids 2nd edn (Cambridge Univ. Press, 2014).
Patel, Z. S., Alrashed, A. O., Dwivedi, K., Salviato, M. & Meza, L. R. Rethinking ductility—a study into the size-affected fracture of additively manufactured polymers. Addit. Manuf. 84, 104113 (2024).
Dai, V. & Zakhor, A. in Emerging Lithographic Technologies IV Vol. 3997, 467–477 (SPIE, 2000).
Liu, H.-I., Dai, V., Zakhor, A. & Nikolic, B. in Emerging Lithographic Technologies X Vol. 6151, 632–645 (SPIE, 2006).
Nanoscribe Photonic Professional GT2. https://www.nanoscribe.com/en/products/photonic-professional-gt2/ (2025).
Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photon. 16, 784–791 (2022).
Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photon. 15, 932–938 (2021).
Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).
Hugonin, J. P. & Lalanne, P. RETICOLO software for grating analysis. Preprint at https://arxiv.org/abs/2101.00901 (2025).
Holzwarth, C., Barwicz, T. & Smith, H. I. Optimization of hydrogen silsesquioxane for photonic applications. J. Vac. Sci. Technol. B 25, 2658–2661 (2007).
Kawamoto, R., Andò, E., Viggiani, G. & Andrade, J. E. Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016).
Choi, W. J. et al. Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nat. Mater. 18, 820–826 (2019).
Choi, W. J., Lee, S. H., Cha, M. & Kotov, N. A. Chiral kirigami for bend-tolerant reconfigurable hologram with continuously variable chirality measures. Adv. Mater. 36, e2401131 (2024).
Choi, W. et al. Helical photonic metamaterials for encrypted chiral holograms. Adv. Sci. 12, e07931 (2025).