Shapson-Coe, A. et al. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science 384, eadk4858 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

The MICrONS Consortium. Functional connectomics spanning multiple areas of mouse visual cortex. Nature 640, 435–447 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Wilson, N. M., Ortiz, A. K. & Johnson, A. B. The vascular model repository: a public resource of medical imaging data and blood flow simulation results. J. Med. Devices 7, 040923 (2013).

Article 

Google Scholar
 

Witten, E. Non-commutative geometry and string field theory. Nucl. Phys. B 268, 253–294 (1986).

Article 
ADS 
MathSciNet 

Google Scholar
 

Carlip, S. Quadratic differentials and closed string vertices. Phys. Lett. B 214, 187–192 (1988).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Saadi, M. & Zwiebach, B. Closed string field theory from polyhedra. Ann. Phys. 192, 213–227 (1989).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Cajal, S. R. Y., Azoulay, D. L., Swanson, N. & Swanson, L. W. Histology Of The Nervous System: Of Man And Vertebrates (Oxford Univ. Press, 1995).

Murray, C. D. The physiological principle of minimum work. Proc. Natl Acad. Sci. USA 12, 207–214 (1926).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Dehmamy, N., Milanlouei, S. & Barabási, A.-L. A structural transition in physical networks. Nature 563, 676–680 (2018).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Liu, Y., Dehmamy, N. & Barabási, A.-L. Isotopy and energy of physical networks. Nat. Phys. 17, 216–222 (2021).

Article 
CAS 

Google Scholar
 

Budd, J. M. L. et al. Neocortical axon arbors trade-off material and conduction delay conservation. PLoS Comput. Biol. 6, e1000711 (2010).

Article 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar
 

Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, Z., Zhao, M. & Yu, Q.-X. Modeling of branching structures of plants. J. Theor. Biol. 209, 383–394 (2001).

Article 
ADS 

Google Scholar
 

Durand, M. Architecture of optimal transport networks. Phys. Rev. E 73, 016116 (2006).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bontorin, S., Cencetti, G., Gallotti, R., Lepri, B. & De Domenico, M. Emergence of complex network topologies from flow-weighted optimization of network efficiency. Phys. Rev. X 14, 021050 (2024).

CAS 

Google Scholar
 

Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation networks. Nature 399, 130–132 (1999).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

D’Souza, R. M., Borgs, C., Chayes, J. T., Berger, N. & Kleinberg, R. D. Emergence of tempered preferential attachment from optimization. Proc. Natl Acad. Sci. USA 104, 6112–6117 (2007).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Latty, T. et al. Structure and formation of ant transportation networks. J. R. Soc. Interface 8, 1298–1306 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sexton, Z. A. et al. Rapid model-guided design of organ-scale synthetic vasculature for biomanufacturing. Science 388, 1198–1204 (2025).

Article 
ADS 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chklovskii, D. & Stevens, C. Wiring optimization in the brain. In Advances in Neural Information Processing Systems 12: Proc. 1999 Conference 103–107 (MIT Press, 1999).

Chklovskii, D. B., Schikorski, T. & Stevens, C. F. Wiring optimization in cortical circuits. Neuron 34, 341–347 (2002).

Article 
PubMed 
CAS 

Google Scholar
 

Kim, Y., Sinclair, R., Chindapol, N., Kaandorp, J. A. & Schutter, E. D. Geometric theory predicts bifurcations in minimal wiring cost trees in biology are flat. PLoS Comput. Biol. 8, e1002474 (2012).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hwang, F. K., Richards, D. S. & Winter, P. The Steiner Tree Problem 1st edn (Elsevier, 1992).

Rosenthal, A. Computing the reliability of complex networks. SIAM J. Appl. Math. 32, 384–393 (1977).

Article 
MathSciNet 

Google Scholar
 

Winter, P. Steiner problem in networks: a survey. Networks 17, 129–167 (1987).

Article 
MathSciNet 

Google Scholar
 

Amirghasemi, M. et al. in Frontiers in Nature-Inspired Industrial Optimization 1st edn (eds Khosravy, M., Gupta, N. & Patel, N.) 33–48 (Springer, 2022).

Cherniak, C. Local optimization of neuron arbors. Biol. Cybern. 66, 503–510 (1992).

Article 
PubMed 
CAS 

Google Scholar
 

Zamir, M. Optimality principles in arterial branching. J. Theor. Biol. 62, 227–251 (1976).

Article 
ADS 
PubMed 
CAS 

Google Scholar
 

Corals – 3D digitization. https://3d.si.edu/corals.

Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gonzalez de Tanago, J. et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9, 223–234 (2018).

Article 

Google Scholar
 

Pan, H., Hétroy-Wheeler, F., Charlaix, J. & Colliaux, D. ARABIDOPSIS 3D+T dataset. Zenodo https://doi.org/10.5281/zenodo.5205561 (2021).

Percheron, G. Quantitative analysis of dendritic branching. I. Simple formulae for the quantitative analysis of dendritic branching. Neurosci. Lett. 14, 287–293 (1979).

Article 
PubMed 
CAS 

Google Scholar
 

Percheron, G. Quantitative analysis of dendritic branching. II. Fundamental dendritic numbers as a tool for the study of neuronal groups. Neurosci. Lett. 14, 295–302 (1979).

Article 
PubMed 
CAS 

Google Scholar
 

Miyawaki, S., Tawhai, M. H., Hoffman, E. A., Wenzel, S. E. & Lin, C.-L. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface. Biomech. Model. Mechanobiol. 16, 583–596 (2017).

Article 
PubMed 

Google Scholar
 

Schreiner, W. & Buxbaum, P. Computer-optimization of vascular trees. IEEE Trans. Biomed. Eng. 40, 482–491 (1993).

Article 
PubMed 
CAS 

Google Scholar
 

Jessen, E., Steinbach, M. C., Debbaut, C. & Schillinger, D. Rigorous mathematical optimization of synthetic hepatic vascular trees. J. R. Soc. Interface 19, 20220087 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Keelan, J., Chung, E. M. L. & Hague, J. P. Simulated annealing approach to vascular structure with application to the coronary arteries. R. Soc. Open Sci. 3, 150431 (2016).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Bobenko, A. I., Sullivan, J. M., Schröder, P. & Ziegler, G. M. (eds) Discrete Differential Geometry (Birkhäuser, 2008).

Bianconi, G. & Rahmede, C. Complex quantum network manifolds in dimension d > 2 are scale-free. Sci. Rep. 5, 13979 (2015).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Bianconi, G., Rahmede, C. & Wu, Z. Complex quantum network geometries: evolution and phase transitions. Phys. Rev. E 92, 022815 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bianconi, G. & Rahmede, C. Network geometry with flavor: from complexity to quantum geometry. Phys. Rev. E 93, 032315 (2016).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Gromov, M. Partial Differential Relations 1st edn (Springer, 1986).

Tong, D. Lectures on string theory. University of Cambridge http://www.damtp.cam.ac.uk/user/tong/string.html (2009).

Lynch, J. P. Steep, cheap and deep: an ideotype to optimize water and n acquisition by maize root systems. Ann. Bot. 112, 347–357 (2013).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Harris, S. D. Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 100, 823–832 (2008).

Article 
PubMed 

Google Scholar
 

Barabási, D. L. & Barabási, A.-L. A genetic model of the connectome. Neuron 105, 435–445 (2020).

Article 

Google Scholar
 

West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

Article 
PubMed 
CAS 

Google Scholar
 

Thompson, D. W. On Growth and Form (Cambridge Univ. Press, 1992).

West, G. Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies (Penguin Press, 2017).

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

Article 
ADS 
MathSciNet 

Google Scholar
 

Pósfai, M. et al. Impact of physicality on network structure. Nat. Phys. 20, 142–149 (2024).

Article 

Google Scholar
 

Glover, C. & Barabási, A.-L. Measuring entanglement in physical networks. Phys. Rev. Lett. 133, 077401 (2024).

Article 
ADS 
MathSciNet 
PubMed 
CAS 

Google Scholar
 

Bonamassa, I. et al. Logarithmic kinetics and bundling in physical networks. Preprint at https://arxiv.org/abs/2401.02579 (2024).

Cimini, G. et al. The statistical physics of real-world networks. Nat. Rev. Phys. 1, 58–71 (2019).

Article 

Google Scholar
Â