Louzada, K. L., Stewart, S. T., Weiss, B. P., Gattacceca, J. & Bezaeva, N. S. Shock and static pressure demagnetization of pyrrhotite and implications for the Martian crust. Earth Planet. Sci. Lett. 290, 90–101 (2010).


Google Scholar
 

Louzada, K. L. et al. Impact demagnetization of the Martian crust: current knowledge and future directions. Earth Planet. Sci. Lett. 305, 257–269 (2011).


Google Scholar
 

Lillis, R. J., Stewart, S. T. & Manga, M. Demagnetization by basin-forming impacts on early Mars: contributions from shock, heat, and excavation. J. Geophys. Res. Planets 118, 1045–1062 (2013).


Google Scholar
 

Mittelholz, A., Johnson, C. L., Feinberg, J. M., Langlais, B. & Phillips, R. J. Timing of the martian dynamo: new constraints for a core field 4.5 and 3.7 Ga ago. Sci. Adv. 6, 1–7 (2020).


Google Scholar
 

Mittelholz, A. et al. Magnetic field signatures of craters on Mars. Geophys. Res. Lett. 51, 1–10 (2024).


Google Scholar
 

Rochette, P. Crustal magnetization of Mars controlled by lithology or cooling rate in a reversing dynamo? Geophys. Res. Lett. 33, 2006–2009 (2006).


Google Scholar
 

Steele, S. C. et al. Weak magnetism of Martian impact basins may reflect cooling in a reversing dynamo. Nat. Commun. 15, 6831 (2024).


Google Scholar
 

Gattacceca, J. et al. Unraveling the simultaneous shock magnetization and demagnetization of rocks. Phys. Earth Planet. Inter. 182, 42–49 (2010).


Google Scholar
 

Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S. & Frey, H. V. Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. Planets 118, 1488–1511 (2013).


Google Scholar
 

Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A. & Lillis, R. J. Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures. J. Geophys. Res. Planets 122, 2294–2311 (2017).


Google Scholar
 

Arkani-Hamed, J. Timing of the Martian core dynamo. J. Geophys. Res. Planets 109, E03006 (2004).


Google Scholar
 

Gilder, S. A., Pohl, J. & Eitel, M. Magnetic signatures of terrestrial meteorite impact craters: a summary. in Magnetic Fields in the Solar System (eds. Lühr, H., Wicht, J., Gilder, S. A. & Holschneider, M.) vol. 448 357–382 (Springer International Publishing, 2018).

Mohit, P. S. & Arkani-Hamed, J. Impact demagnetization of the Martian crust. Icarus 168, 305–317 (2004).


Google Scholar
 

Tiwari, S., Joshi, G., Phukon, P., Agarwal, A. & Venkateshwarlu, M. Emplacement of monomict breccia and crater size estimate at the Dhala impact structure, India. Meteorit. Planet. Sci. 60, 663–679 (2025).


Google Scholar
 

Markandeyulu, A. et al. Application of high resolution airborne geophysical data in geological modelling of Mohar Cauldron Complex, Bundelkhand Massif, central India: implications for uranium exploration. Explor. Geophys. 45, 134–146 (2014).


Google Scholar
 

Alva-Valdivia, L. M., Rodríguez-Trejo, A., Morales, J., González-Rangel, J. A. & Agarwal, A. Paleomagnetism and age constraints of historical lava flows from the El Jorullo volcano, Michoacán, Mexico. J. South Am. Earth Sci. 93, 439–448 (2019).


Google Scholar
 

Lattard, D., Engelmann, R., Kontny, A. & Sauerzapf, U. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: effects of composition, crystal chemistry, and thermomagnetic methods. J. Geophys. Res. 111, B12S28 (2006).


Google Scholar
 

Direen, N. G., Pfeiffer, K. M. & Schmidt, P. W. Strong remanent magnetization in pyrrhotite: a structurally controlled example from the Paleoproterozoic Tanami orogenic gold province, northern Australia. Precambrian Res. 165, 96–106 (2008).


Google Scholar
 

Tauxe, L. Paleomagnetic Principles and Practice. vol. 17 (Kluwer Academic Publishers, 2003).

Alva-Valdivia, L. M. et al. Nature inspired synthesis of magnetite nanoparticle aggregates from natural berthierine. RSC Adv. 13, 32054–32062 (2023).


Google Scholar
 

Alva-Valdivia, L. M., Guerrero-Díaz, P., Urrutia-Fucugauchi, J., Agarwal, A. & Caballero-Miranda, C. I. Review of magmatic iron-ore mineralization in central-western Mexico: rock-magnetism and magnetic anomaly modelling of Las Truchas, case study. J. South Am. Earth Sci. 97, 102409 (2020).


Google Scholar
 

Alva-Valdivia, L. M. et al. Paleomagnetism and tectonics from the late Pliocene to late Pleistocene in the Xalapa monogenetic volcanic field, Veracruz, Mexico. GSA Bull 131, 1581–1590 (2019).


Google Scholar
 

Fabian, K. Some additional parameters to estimate domain state from isothermal magnetization measurements. Earth Planet. Sci. Lett. 213, 337–345 (2003).


Google Scholar
 

Williams, W. et al. Vortex magnetic domain state behavior in the day plot. Geochem. Geophys. Geosyst. 25, e2024GC011462 (2024).

Dearing, J. A. et al. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 124, 228–240 (1996).


Google Scholar
 

Peters, C. & Dekkers, M. J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth Parts A/B/C 28, 659–667 (2003).


Google Scholar
 

Muxworthy, A. R. Effect of grain interactions on the frequency dependence of magnetic susceptibility. Geophys. J. Int. 144, 441–447 (2001).


Google Scholar
 

Worm, H. & Jackson, M. The superparamagnetism of Yucca Mountain Tuff. J. Geophys. Res. Solid Earth 104, 25415–25425 (1999).


Google Scholar
 

Clark, D. A. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO J. Aust. Geol. Geophys. 17, 83–103 (1997).


Google Scholar
 

Salminen, J., Pesonen, L. J., Reimold, W. U., Donadini, F. & Gibson, R. L. Paleomagnetic and rock magnetic study of the Vredefort impact structure and the Johannesburg Dome, Kaapvaal Craton, South Africa-Implications for the apparent polar wander path of the Kaapvaal Craton during the Mesoproterozoic. Precambrian Res. 168, 167–184 (2009).


Google Scholar
 

Carporzen, L., Weiss, B. P., Gilder, S. A., Pommier, A. & Hart, R. J. Lightning remagnetization of the Vredefort impact crater: no evidence for impact-generated magnetic fields. J. Geophys. Res. Planets 117, 1–17 (2012).


Google Scholar
 

Joshi, G., Phukon, P., Agarwal, A. & Ojha, A. K. On the emplacement of the impact melt at the Dhalā impact structure, India. J. Geophys. Res. Planets 128, e2023JE007840 (2023).


Google Scholar
 

Agarwal, A. & Alva-Valdivia, L. M. Curie temperature of weakly shocked target basalts at the Lonar impact crater, India. Earth. Planets Sp 71, 141 (2019).


Google Scholar
 

Agarwal, A., Kontny, A., Kenkmann, T. & Poelchau, M. H. Variation in magnetic fabrics at low shock pressure due to experimental impact cratering. J. Geophys. Res. Solid Earth 124, 9095–9108 (2019).


Google Scholar
 

Reznik, B., Kontny, A., Fritz, J. & Gerhards, U. Shock-induced deformation phenomena in magnetite and their consequences on magnetic properties. Geochem. Geophys. Geosyst. 17, 2374–2393 (2016).


Google Scholar
 

Reznik, B., Kontny, A. & Fritz, J. Effect of moderate shock waves on magnetic susceptibility and microstructure of a magnetite-bearing ore. Meteorit. Planet. Sci. 52, 1495–1504 (2017).


Google Scholar
 

Pati et al. Pseudotachylitic breccia from the Dhala impact structure, north-central India: Texture, mineralogy and geochemical characterization. Tectonophysics 649, 18–32 (2015).


Google Scholar
 

Onorato, P. I. K., Uhlmann, D. R. & Simonds, C. H. The thermal history of the Manicouagan Impact Melt Sheet, Quebec. J. Geophys. Res. Solid Earth 83, 2789–2798 (1978).


Google Scholar
 

Nagy, L. et al. Stability of equidimensional pseudo–single-domain magnetite over billion-year timescales. Proc. Natl. Acad. Sci. USA. 114, 10356–10360 (2017).


Google Scholar
 

Gattacceca, J. et al. Paleomagnetism and rock magnetism of east and west Clearwater Lake impact structures. Can. J. Earth Sci. 56, 983–993 (2019).


Google Scholar
 

Behera, S. S., Tiwari, S., Pandey, A. K., Agarwal, A. & Ojha, A. K. The probable direction of impact at Dhala impact structure, India deciphered from microfracture intensity and X-ray diffractometry: a new potential impact direction indicator. Earth Planets 1–11 https://doi.org/10.1186/s40623-024-02028-1 (2024).

Gattacceca, J., Lamali, A., Rochette, P., Boustie, M. & Berthe, L. The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Inter. 162, 85–98 (2007).


Google Scholar
 

Gattacceca, J. et al. Investigating impact demagnetization through laser impacts and SQUID microscopy. Geology 34, 333–336 (2006).


Google Scholar
 

Roberts, A. P. et al. Resolving the origin of pseudo-single domain magnetic behavior. J. Geophys. Res. Solid Earth 122, 9534–9558 (2017).


Google Scholar
 

Bezaeva, N. S., Rochette, P., Gattacceca, J., Sadykov, R. A. & Trukhin, V. I. Pressure demagnetization of the Martian crust: ground truth from SNC meteorites. Geophys. Res. Lett. 34, 2–5 (2007).


Google Scholar
 

Bezaeva, N. S., Gattacceca, J., Rochette, P., Sadykov, R. A. & Trukhin, V. I. Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2 GPa. Phys. Earth Planet. Inter. 179, 7–20 (2010).


Google Scholar
 

Gilder, Goff, S. A., Le, M. & Chervin, J.-C. Static stress demagnetization of single and multidomain magnetite with implications for meteorite impacts. High Press. Res. 26, 539–547 (2006).


Google Scholar
 

Jackson, M., Borradaile, G., Hudleston, P. & Banerjee, S. Experimental deformation of synthetic magnetite-bearing calcite sandstones: effects on remanence, bulk magnetic properties, and magnetic anisotropy. J. Geophys. Res. 98, 383–401 (1993).


Google Scholar
 

Louzada, K. L., Stewart, S. T. & Weiss, B. P. Effect of shock on the magnetic properties of pyrrhotite, the Martian crust, and meteorites. Geophys. Res. Lett. 34, 1–5 (2007).


Google Scholar
 

Tikoo, S. M. et al. Preservation and detectability of shock-induced magnetization. J. Geophys. Res. Planets 120, 1461–1475 (2015).


Google Scholar
 

Nagata, T. & Carleton, B. J. Notes on piezo-remanent magnetization of igneous rocks. J. Geomagn. Geoelectr. 20, 115–127 (1968).


Google Scholar
 

Nagata, T. Basic magnetic properties of rocks under the effects of mechanical stresses. Tectonophysics 9, 167–195 (1970).


Google Scholar
 

Gilder, S. A., LeGoff, M., Chervin, J. C. & Peyronneau, J. Magnetic properties of single and multi-domain magnetite under pressures from 0 to 6 GPa. Geophys. Res. Lett. 31, 1–5 (2004).


Google Scholar
 

Nagata, T. Main characteristics of piezo-magnetization and their qualitative interpretation. J. Geomagn. Geoelectr. 18, 81–97 (1966).


Google Scholar
 

Pati, J. K. et al. Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure, India. Meteorit. Planet. Sci. 52, 722–736 (2017).


Google Scholar
 

Dunlop, D. J. & Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers. (Cambridge University Press, 1997).

Kuzina, D. M. et al. Paleomagnetic study of impactites from the Karla impact structure suggests protracted postimpact hydrothermalism. Meteorit. Planet. Sci. 57, 1846–1860 (2022).


Google Scholar
 

Mendes, B., Kontny, A., Dudzisz, K. & Wilke, F. Ries magnetic mineralogy: exploring impact and post-impact evolution of crater magnetism. Meteorit. Planet. Sci. 59, 1577–1609 (2024).


Google Scholar
 

O’Keefe, J. D. & Ahrens, T. J. Impact-induced melting of planetary surfaces. in Large Meteorite Impacts and Planetary Evolution (eds. Dressier, B. O., Grieve, R. A. F. & Sharpton, V. L.) 0 (Geological Society of America, https://doi.org/10.1130/SPE293-p103.1992).

Plescia, J. B. & Cintala, M. J. Impact melt in small lunar highland craters. J. Geophys. Res. Planets 117, 1–12 (2012).


Google Scholar
 

Kletetschka, G., Kavkova, R. & Ucar, H. Plasma shielding removes prior magnetization record from impacted rocks near Santa Fe. New Mexico. Sci. Rep. 11, 1–13 (2021).


Google Scholar
 

Narrett, I. S. et al. Impact plasma amplification of the ancient lunar dynamo. Sci. Adv. 11, 1–11 (2025).


Google Scholar
 

Carporzen, L., Gilder, S. A. & Hart, R. J. Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature 435, 198–201 (2005).


Google Scholar
 

Dunlop, D. J. & Arkani-Hamed, J. Magnetic minerals in the Martian crust. J. Geophys. Res. Planets 110, 1–11 (2005).


Google Scholar
 

Rochette, P. et al. Matching Martian crustal magnetization and magnetic properties of Martian meteorites. Meteorit. Planet. Sci. 40, 529–540 (2005).


Google Scholar
 

Pati, Reimold, W. U., Koeberl, C. & Pati, P. The Dhala structure, Bundelkhand craton, central india-eroded remnant of a large paleoproterozoic impact structure. Meteorit. Planet. Sci. 43, 1383–1398 (2008).

Saha, L. et al. Crustal geodynamics from the Archaean Bundelkhand Craton, India: constraints from zircon U–Pb–Hf isotope studies. Geol. Mag. 153, 179–192 (2016).


Google Scholar
 

Pradhan, V. R., Meert, J. G., Pandit, M. K., Kamenov, G. & Mondal, M. E. A. Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Res. 198–199, 51–76 (2012).


Google Scholar
 

Deb, T. & Bhattacharyya, T. Earth-Science Reviews The evolution of the fracture systems under progressive sinistral shear in the Bundelkhand Craton, Central India: a review and new insights. Earth Sci. Rev 235, 104238 (2022).


Google Scholar
 

Singh, A. K. et al. Characteristic landforms and geomorphic features associated with impact structures: Observations at the Dhala structure, north-central India. Earth Surf. Process. Landforms 46, 1482–1503 (2021).


Google Scholar
 

Agarwal, A., Kumar, S., Joshi, G. & Agarwal, K. K. Evidence for shock provides insight into the formation of the central elevated area in the Dhala impact structure, India. Meteorit. Planet. Sci. 55, 2772–2779 (2020).


Google Scholar
 

Petrovský, E. & Kapička, A. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res. Solid Earth 111, B12S27 (2006).


Google Scholar
 

Paterson, G. A., Zhao, X., Jackson, M. & Heslop, D. Measuring, processing, and analyzing hysteresis data. Geochem. Geophys. Geosyst. 19, 1925–1945 (2018).


Google Scholar
 

Dunlop, D. J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. Solid Earth 107, EPM 4-1–EPM 4-22 (2002).


Google Scholar
 

Dunlop, D. J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. Solid Earth 107, EPM 5-1–EPM 5-15 (2002).


Google Scholar
 

Lurcock, P. C. & Wilson, G. S. PuffinPlot: a versatile, user-friendly program for paleomagnetic analysis. Geochem. Geophys. Geosyst. 13, 1–6 (2012).


Google Scholar
 

Fisher, R. A. Dispersion on a sphere. Proc. R. Soc. London. A. Math. Phys. Sci. 217, 295–305 (1953).


Google Scholar
 

Clark, D. A. & Emerson, J. B. Notes on rock magnetization characteristics in applied geophysical studies. Explor. Geophys. 22, 547–555 (1991).


Google Scholar
 

Pandey, A. K., Agarwal, A., Joshi, G., Sangode, S. J. & Venkateshwarlu, M. Data set of Shock demagnetization in an ambient magnetic field at the Dhala impact structure, India. https://doi.org/10.6084/m9.figshare.30851126 (2025).

Jain, S. C., Gaur, V. P., Srivastava, S. K., Nambiar, K. V. & Saxena, H. P. Recent find of a cauldron structure in Bundelkhand Craton. Geol. Surv. India Spec. Publ. 289, 297 (2001).


Google Scholar
 

Day, R., Fuller, M. & Schmidt, V. A. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter. 13, 260–267 (1977).


Google Scholar