Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).
Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007).
Rygula, A. et al. Raman spectroscopy of proteins: a review. J. Raman Spectrosc. 44, 1061–1076 (2013).
Czamara, K. et al. Raman spectroscopy of lipids: a review. J. Raman Spectrosc. 46, 4–20 (2015).
Lima, C., Muhamadali, H. & Goodacre, R. The role of Raman spectroscopy within quantitative metabolomics. Annu. Rev. Anal. Chem. 14, 323–345 (2021).
Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, eaaa8870 (2015).
Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).
Cheng, J.-X., Jia, Y. K., Zheng, G. & Xie, X. S. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophys. J. 83, 502–509 (2002).
Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).
Min, W., Freudiger, C. W., Lu, S. & Xie, X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62, 507–530 (2011).
Evans, C. L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci. USA 102, 16807–16812 (2005).
Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).
Dodo, K., Fujita, K. & Sodeoka, M. Raman spectroscopy for chemical biology research. J. Am. Chem. Soc. 144, 19651–19667 (2022).
Gao, X., Li, X. & Min, W. Absolute stimulated Raman cross sections of molecules. J. Phys. Chem. Lett. 14, 5701–5708 (2023).
De Silvestri, S. et al. Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated Raman scattering in α-perylene crystal from 20 to 300 K. Chem. Phys. Lett. 116, 146–152 (1985).
Selm, R. et al. Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system. Opt. Lett. 35, 3282–3284 (2010).
Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).
Camp, C. H. Jr et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photon. 8, 627–634 (2014).
Yu, Q. et al. Transient stimulated Raman excited fluorescence spectroscopy. J. Am. Chem. Soc. 145, 7758–7762 (2023).
Yu, Q. et al. Transient stimulated Raman scattering spectroscopy and imaging. Light Sci. Appl. 13, 70 (2024).
Kop, R. H., De Vries, P., Sprik, R. & Lagendijk, A. Kramers-Kronig relations for an interferometer. Opt. Commun. 138, 118–126 (1997).
Lenz, G., Eggleton, B., Giles, C., Madsen, C. & Slusher, R. Dispersive properties of optical filters for WDM systems. IEEE J. Quantum Electron. 34, 1390–1402 (1998).
Chia, S.-H. et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers. Optica 1, 315–322 (2014).
Prince, R. C., Frontiera, R. R. & Potma, E. O. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117, 5070–5094 (2016).
Stolen, R. & Lin, C. Self-phase-modulation in silica optical fibers. Phys. Rev. A 17, 1448 (1978).
Tomlinson, W., Stolen, R. & Shank, C. Compression of optical pulses chirped by self-phase modulation in fibers. JOSA B 1, 139–149 (1984).
Nakamura, T., Ramaiah Badarla, V., Hashimoto, K., Schunemann, P. G. & Ideguchi, T. Simple approach to broadband mid-infrared pulse generation with a mode-locked Yb-doped fiber laser. Opt. Lett. 47, 1790–1793 (2022).
Selm, R., Krauss, G., Leitenstorfer, A. & Zumbusch, A. Simultaneous second-harmonic generation, third-harmonic generation, and four-wave mixing microscopy with single sub-8 fs laser pulses. Appl. Phys. Lett. 99, 181124 (2011).
Xiong, H. et al. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photon. 13, 412–417 (2019).
Palonpon, A. F. et al. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8, 677–692 (2013).
Yamakoshi, H. et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. J. Am. Chem. Soc. 133, 6102–6105 (2011).
Kuramochi, H., Takeuchi, S. & Tahara, T. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: apparatus and applications. Rev. Sci. Instrum. 87, 043107 (2016).
Paxinos, G. & Franklin, K. B. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates (Academic Press, 2019).
Rohleder, D., Kiefer, W. & Petrich, W. Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy. Analyst 129, 906–911 (2004).
Saade, J. et al. Glicemical analysis of human blood serum using FT-Raman: a new approach. Photomed. Laser Surg. 30, 388–392 (2012).
Giansante, S., Giana, H. E., Fernandes, A. B. & Silveira, L. Jr Analytical performance of Raman spectroscopy in assaying biochemical components in human serum. Lasers Med. Sci. 37, 287–298 (2022).
Medipally, D. K. et al. Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients. Analyst 142, 1216–1226 (2017).
Friedman, A. N. & Fadem, S. Z. Reassessment of albumin as a nutritional marker in kidney disease. J. Am. Soc. Nephrol. 21, 223–230 (2010).
Alves-Bezerra, M. & Cohen, D. E. Triglyceride metabolism in the liver. Compr. Physiol. 8, 1–22 (2018).
Kannel, W. B., Castelli, W. P. & Gordon, T. Cholesterol in the prediction of atherosclerotic disease: new perspectives based on the Framingham study. Ann. Intern. Med. 90, 85–91 (1979).
Don, B. R. & Kaysen, G. Poor nutritional status and inflammation: serum albumin: relationship to inflammation and nutrition. Semin. Dial. 17, 432–437 (2004).
Busher, J. T. in Clinical Methods: The History, Physical, and Laboratory Examinations (eds Walker, H. K. et al.) Ch. 101 (Butterworths, 1990).
Cheng, J.-X. & Xie, X. S. Coherent Raman Scattering Microscopy (CRC Press, 2012).
Camp, C. H. Jr, Lee, Y. J. & Cicerone, M. T. Quantitative, comparable coherent anti-Stokes Raman scattering (CARS) spectroscopy: correcting errors in phase retrieval. J. Raman Spectrosc. 47, 408–415 (2016).
Pollard, W. T. & Mathies, R. A. Analysis of femtosecond dynamic absorption spectra of nonstationary states. Annu. Rev. Phys. Chem. 43, 497–523 (1992).
Kuramochi, H. & Tahara, T. Tracking ultrafast structural dynamics by time-domain Raman spectroscopy. J. Am. Chem. Soc. 143, 9699–9717 (2021).
Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).
Liu, X., Shi, L., Zhao, Z., Shu, J. & Min, W. VIBRANT: spectral profiling for single-cell drug responses. Nat. Methods 21, 501–511 (2024).
Liu, Y., Lee, Y. J. & Cicerone, M. T. Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform. Opt. Lett. 34, 1363–1365 (2009).
Vartiainen, E. M., Rinia, H. A., Müller, M. & Bonn, M. Direct extraction of Raman line-shapes from congested CARS spectra. Opt. Express 14, 3622–3630 (2006).
Xiong, H. et al. Super-broadband stimulated Raman scattering spectroscopy and imaging. figshare https://doi.org/10.6084/m9.figshare.30379255 (2025).