Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, C. H. et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197 (2014).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, M. et al. Assembly and architecture of endogenous NMDA receptors in adult cerebral cortex and hippocampus. Cell 188, 1198–1207 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Paoletti, P., Bellone, C. & Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Balu, D. T. The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv. Pharmacol. 76, 351–382 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

McKeage, K. Memantine: a review of its use in moderate to severe Alzheimer’s disease. CNS Drugs 23, 881–897 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Paoletti, P. Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 33, 1351–1365 (2011).

Article 
PubMed 

Google Scholar
 

Rauner, C. & Kohr, G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-d-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem. 286, 7558–7566 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Wyllie, D. J., Livesey, M. R. & Hardingham, G. E. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74, 4–17 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vicini, S. et al. Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. J. Neurophysiol. 79, 555–566 (1998).

Article 
CAS 
PubMed 

Google Scholar
 

Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. & Traynelis, S. F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563, 345–358 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gielen, M., Siegler Retchless, B., Mony, L., Johnson, J. W. & Paoletti, P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703–707 (2009).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yuan, H., Hansen, K. B., Vance, K. M., Ogden, K. K. & Traynelis, S. F. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 29, 12045–12058 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gielen, M. et al. Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Neuron 57, 80–93 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jalali-Yazdi, F., Chowdhury, S., Yoshioka, C. & Gouaux, E. Mechanisms for zinc and proton inhibition of the GluN1/GluN2A NMDA receptor. Cell 175, 1520–1532 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, S. & Gouaux, E. Structure and symmetry inform gating principles of ionotropic glutamate receptors. Neuropharmacology 112, 11–15 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Chou, T. H. et al. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 632, 209–217 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gladding, C. M. & Raymond, L. A. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol. Cell. Neurosci. 48, 308–320 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Hardingham, G. E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Laurie, D. J. & Seeburg, P. H. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 14, 3180–3194 (1994).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. & Seeburg, P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).

Article 
CAS 
PubMed 

Google Scholar
 

Huang, X. et al. Structural insights into the diverse actions of magnesium on NMDA receptors. Neuron 113, 1006–1018 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Cornelison, G. L. & Mihic, S. J. Contaminating levels of zinc found in commonly-used labware and buffers affect glycine receptor currents. Brain Res. Bull. 100, 1–5 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Low, C. M., Zheng, F., Lyuboslavsky, P. & Traynelis, S. F. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-d-aspartate NR1/NR2A receptors. Proc. Natl Acad. Sci. USA 97, 11062–11067 (2000).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1–NR2A receptors. J. Neurosci. 17, 5711–5725 (1997).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Structural basis of ketamine action on human NMDA receptors. Nature 596, 301–305 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zorumski, C. F., Izumi, Y. & Mennerick, S. Ketamine: NMDA receptors and beyond. J. Neurosci. 36, 11158–11164 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, J. et al. Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits. Nat. Struct. Mol. Biol. 30, 629–639 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Esmenjaud, J. B. et al. An inter-dimer allosteric switch controls NMDA receptor activity. EMBO J. https://doi.org/10.15252/embj.201899894 (2019).

Lu, W., Du, J., Goehring, A. & Gouaux, E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science https://doi.org/10.1126/science.aal3729 (2017).

Stafford, B. K., Manookin, M. B., Singer, J. H. & Demb, J. B. NMDA and AMPA receptors contribute similarly to temporal processing in mammalian retinal ganglion cells. J. Physiol. 592, 4877–4889 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hansen, K. B., Ogden, K. K., Yuan, H. & Traynelis, S. F. Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81, 1084–1096 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jones, K. S., VanDongen, H. M. & VanDongen, A. M. The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J. Neurosci. 22, 2044–2053 (2002).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yu, J. et al. Mechanism of gating and partial agonist action in the glycine receptor. Cell 184, 957–968 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Indra, A. K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ERT and Cre-ERT2 recombinases. Nucleic Acids Res. 27, 4324–4327 (1999).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, X. et al. Trapped ion mobility spectrometry–mass spectrometry improves the coverage and accuracy of four-dimensional untargeted lipidomics. Anal. Chim. Acta 1210, 339886 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

Article 
ADS 
PubMed 

Google Scholar
 

Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jain, A., Liu, R., Xiang, Y. K. & Ha, T. Single-molecule pull-down for studying protein interactions. Nat. Protoc. 7, 445–452 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, X. & Wei, C. RiaXiangzi/Colocalization_ImageJ: Initial release (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.17922313 (2025).