Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Spivak, G. Nucleotide excision repair in humans. DNA Repair 36, 13–18 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hoeijmakers, J. H. Nucleotide excision repair II: from yeast to mammals. Trends Genet. 9, 211–217 (1993).

Article 
CAS 
PubMed 

Google Scholar
 

Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Rapin, I. Disorders of nucleotide excision repair. Handb. Clin. Neurol. 113, 1637–1650 (2013).

Article 
PubMed 

Google Scholar
 

Theil, A. F., Hackes, D. & Lans, H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair 132, 103568 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Coverley, D. et al. Requirement for the replication protein SSB in human DNA excision repair. Nature 349, 538–541 (1991).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9–20 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Li, C. L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59, 1025–1034 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Scharer, O. D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wood, R. D. et al. Nucleotide excision repair of DNA by mammalian cell extracts and purified proteins. Cold Spring Harb. Symp. Quant. Biol. 58, 625–632 (1993).

Article 
CAS 
PubMed 

Google Scholar
 

Selby, C. P., Lindsey-Boltz, L. A., Li, W. & Sancar, A. Molecular mechanisms of transcription-coupled repair. Annu. Rev. Biochem. 92, 115–144 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859–868 (1995).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mu, D. et al. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270, 2415–2418 (1995).

Article 
CAS 
PubMed 

Google Scholar
 

Araujo, S. J. et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14, 349–359 (2000).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kokic, G. et al. Structural basis of TFIIH activation for nucleotide excision repair. Nat. Commun. 10, 2885 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, J. et al. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature 617, 170–175 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570–575 (2007).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yu, J. et al. Molecular architecture and functional dynamics of the pre-incision complex in nucleotide excision repair. Nat. Commun. 15, 8511 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

O’Donovan, A., Davies, A. A., Moggs, J. G., West, S. C. & Wood, R. D. XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature 371, 432–435 (1994).

Article 
ADS 
PubMed 

Google Scholar
 

Wakasugi, M., Reardon, J. T. & Sancar, A. The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J. Biol. Chem. 272, 16030–16034 (1997).

Article 
CAS 
PubMed 

Google Scholar
 

Mu, D., Hsu, D. S. & Sancar, A. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271, 8285–8294 (1996).

Article 
CAS 
PubMed 

Google Scholar
 

Sugasawa, K., Akagi, J., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol Cell 36, 642–653 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wakasugi, M. & Sancar, A. Order of assembly of human DNA repair excision nuclease. J. Biol. Chem. 274, 18759–18768 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Bochkareva, E., Korolev, S., Lees-Miller, S. P. & Bochkarev, A. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J. 21, 1855–1863 (2002).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Zotter, A. et al. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced DNA damage depends on functional TFIIH. Mol. Cell. Biol. 26, 8868–8879 (2006).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, E. Y. et al. Clinical and molecular epidemiological study of xeroderma pigmentosum in China: a case series of 19 patients. J. Dermatol. 44, 71–75 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Li, L., Elledge, S. J., Peterson, C. A., Bales, E. S. & Legerski, R. J. Specific association between the human DNA repair proteins XPA and ERCC1. Proc. Natl Acad. Sci. USA 91, 5012–5016 (1994).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sabatella, M. et al. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res. 46, 9563–9577 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jones, M. et al. Cryo-EM structures of the XPF–ERCC1 endonuclease reveal how DNA-junction engagement disrupts an auto-inhibited conformation. Nat. Commun. 11, 1120 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Greber, B. J., Toso, D. B., Fang, J. & Nogales, E. The complete structure of the human TFIIH core complex. eLife 8, e44771 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kuper, J. et al. XPD stalled on cross-linked DNA provides insight into damage verification. Nat. Struct. Mol. Biol. 31, 1580–1588 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fan, J. & Pavletich, N. P. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev. 26, 2337–2347 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yates, L. A. et al. A structural and dynamic model for the assembly of Replication Protein A on single-stranded DNA. Nat. Commun. 9, 5447 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bochkarev, A., Pfuetzner, R. A., Edwards, A. M. & Frappier, L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385, 176–181 (1997).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mer, G. et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103, 449–456 (2000).

Article 
CAS 
PubMed 

Google Scholar
 

Kim, M. et al. Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair. Proc. Natl Acad. Sci. USA 119, e2207408119 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsodikov, O. V. et al. Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. EMBO J. 26, 4768–4776 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsutakawa, S. E. et al. Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc. Natl Acad. Sci. USA 117, 14127–14138 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fassihi, H. et al. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect. Proc. Natl Acad. Sci. USA 113, E1236–1245 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tapias, A. et al. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J. Biol. Chem. 279, 19074–19083 (2004).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

van den Heuvel, D. et al. A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair. Proc. Natl Acad. Sci. USA 120, e2208860120 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Orelli, B. et al. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J. Biol. Chem. 285, 3705–3712 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Sung, P. et al. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365, 852–855 (1993).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Coin, F. et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat. Genet. 20, 184–188 (1998).

Article 
CAS 
PubMed 

Google Scholar
 

Aibara, S., Schilbach, S. & Cramer, P. Structures of mammalian RNA polymerase II pre-initiation complexes. Nature 594, 124–128 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sia, Y., Pan, H., Chen, K. & Chen, Z. Structural insights into chromatin remodeling by ISWI during active ATP hydrolysis. Science 388, eadu5654 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Agrawal, S. et al. Human RPA is an essential telomerase processivity factor for maintaining telomeres. Science 390, 495–502 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Henricksen, L. A., Umbricht, C. B. & Wold, M. S. Recombinant replication protein A: expression, complex formation, and functional characterization. J. Biol. Chem. 269, 11121–11132 (1994).

Article 
CAS 
PubMed 

Google Scholar
 

Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5, 53–55 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zheng, S. Q., Palovcak, E., Armache, J. P., Verba, K. A., Cheng, Y. & Agard, D. A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Fernandez-Leiro, R. & Scheres, S. H. W. A pipeline approach to single-particle processing in RELION. Acta Crystallogr. D 73, 496–502 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Swint-Kruse, L. & Brown, C. S. Resmap: automated representation of macromolecular interfaces as two-dimensional networks. Bioinformatics 21, 3327–3328 (2005).

Article 
CAS 
PubMed 

Google Scholar
Â