Chen, H.-Z. et al. Revealing the missing dimension at an exceptional point. Nat. Phys. 16, 571–578 (2020).
Wang, C. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020).
Rüter, C. E. et al. Observation of parity-time symmetry in optic. Nat. Phys. 6, 192–195 (2010).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetr. Nat. Phys. 14, 11–19 (2018).
Peng, B. et al. Loss-induced suppression and revival of lasin. Science 346, 328–332 (2014).
Li, A. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).
Du, H. et al. Nonconservative coupling in a passive silicon microring resonator. Phys. Rev. Lett. 124, 013606 (2020).
Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun. 13, 599 (2022).
Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10, 657–661 (2016).
Zhong, Q. et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).
Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).
Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).
Li, E. et al. Photonic Aharonov–Bohm effect in photon-phonon interactions. Nat. Commun. 5, 3225 (2014).
Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).
Lee, H. et al. Chiral exceptional point enhanced active tuning and nonreciprocity in micro-resonators. Light Sci. Appl. 14, 45 (2025).
Chen, Y. et al. Electrically reconfigurable mode chirality in integrated microring resonators. Laser Photonics Rev. 18, 2301289 (2024).
Wang, C. et al. Coherent perfect absorption at an exceptional point. Science 373, 1261–1265 (2021).
Sweeney, W. R. et al. Perfectly absorbing exceptional points and chiral absorbers. Phys. Rev. Lett. 122, 093901 (2019).
Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018).
Hokmabadi, M. P., Schumer, A. & Christodoulides, D. N. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).
Xu, J. et al. Single-cavity loss-enabled nanometrology. Nat. Nanotechnol. 19, 1472–1477 (2024).
Ruan, Y.-P. et al. Observation of loss-enhanced magneto-optical effect. Nat. Photonics 19, 109–115 (2025).
Mao, W. et al. Exceptional-point-enhanced phase sensing. Sci. Adv. 10, ead15037 (2024).
Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).
Madiot, G. et al. Harnessing coupled nanolasers near exceptional points for directional emission. Sci. Adv. 10, eadr8283 (2024).
Jahromi, A. K. et al. Statistical parity-time-symmetric lasing in an optical fibre network. Nat. Commun. 8, 1359 (2017).
Ferrier, L. et al. Unveiling the enhancement of spontaneous emission at exceptional points. Phys. Rev. Lett. 129, 083602 (2022).
Huang, R. et al. Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2023).
Lu, X. et al. Nonreciprocity and quantum correlations of light transport in hot atoms via reservoir engineering. Phys. Rev. Lett. 126, 223603 (2021).
Zhang, Z. et al. Chirality-induced quantum nonreciprocity. Nat. Photonics 19, 840–846 (2025).
Zhong, Q. et al. Control of spontaneous emission dynamics in microcavities with chiral exceptional surfaces. Phys. Rev. Res. 3, 013220 (2021).
Pick, A. et al. General theory of spontaneous emission near exceptional points. Opt. Express 25, 12325–12348 (2017).
Khanbekyan, M. & Wiersig, J. Decay suppression of spontaneous emission of a single emitter in a high-Q cavity at exceptional points. Phys. Rev. Res. 2, 023375 (2020).
Lu, Y. et al. Anomalous spontaneous emission dynamics at chiral exceptional points. Opt. Express 30, 41784–41803 (2022).
Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).
Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).
Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).
Larocque, H. et al. Tunable quantum emitters on large-scale foundry silicon photonics. Nat. Commun. 15, 5781 (2024).
Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).
Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021).
Yue, W. & Yi-jian, J. Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3. Opt. Mater. 23, 403–408 (2003).
Wang, X. et al. Large-scale quantum dot-lithium niobate hybrid integrated photonic circuits enabling on-chip quantum networking. Nat. Mater. 24, 1898–1905 (2025).
Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).
Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Uppu, R. et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 16, 1308–1317 (2021).
Ding, X. et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photonics 19, 387–391 (2025).
Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340–345 (2016).
Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020).
Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622–627 (2019).
Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).
Holzgrafe, J. et al. Relaxation of the electro-optic response in thin-film lithium niobate modulators. Opt. Express 32, 3619–3631 (2024).
Chen, Y. et al. In situ three-dimensional strain engineering of solid-state quantum emitters in photonic structures towards scalable quantum networks. Nat. Commun. 16, 5564 (2025).
Vogel, M. M. et al. Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots. Appl. Phys. Lett. 91, 051904 (2007).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).
Shambat, G. et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nat. Commun. 2, 539 (2011).
Jin, C.-Y. et al. Ultrafast non-local control of spontaneous emission. Nat. Nanotechnol. 9, 886–890 (2014).
Chen, Y. On-chip non-Hermitian cavity quantum electrodynamics. figshare https://doi.org/10.6084/m9.figshare.31046719 (2026).