Chen, H.-Z. et al. Revealing the missing dimension at an exceptional point. Nat. Phys. 16, 571–578 (2020).

Article 
CAS 

Google Scholar
 

Wang, C. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020).

Article 
CAS 

Google Scholar
 

Rüter, C. E. et al. Observation of parity-time symmetry in optic. Nat. Phys. 6, 192–195 (2010).

Article 

Google Scholar
 

El-Ganainy, R. et al. Non-Hermitian physics and PT symmetr. Nat. Phys. 14, 11–19 (2018).

Article 
CAS 

Google Scholar
 

Peng, B. et al. Loss-induced suppression and revival of lasin. Science 346, 328–332 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Li, A. et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol. 18, 706–720 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Du, H. et al. Nonconservative coupling in a passive silicon microring resonator. Phys. Rev. Lett. 124, 013606 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Soleymani, S. et al. Chiral and degenerate perfect absorption on exceptional surfaces. Nat. Commun. 13, 599 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10, 657–661 (2016).

Article 
CAS 

Google Scholar
 

Zhong, Q. et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett. 122, 153902 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

Article 
PubMed 

Google Scholar
 

Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

Article 

Google Scholar
 

Li, E. et al. Photonic Aharonov–Bohm effect in photon-phonon interactions. Nat. Commun. 5, 3225 (2014).

Article 
PubMed 

Google Scholar
 

Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lee, H. et al. Chiral exceptional point enhanced active tuning and nonreciprocity in micro-resonators. Light Sci. Appl. 14, 45 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, Y. et al. Electrically reconfigurable mode chirality in integrated microring resonators. Laser Photonics Rev. 18, 2301289 (2024).

Article 

Google Scholar
 

Wang, C. et al. Coherent perfect absorption at an exceptional point. Science 373, 1261–1265 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Sweeney, W. R. et al. Perfectly absorbing exceptional points and chiral absorbers. Phys. Rev. Lett. 122, 093901 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Hokmabadi, M. P., Schumer, A. & Christodoulides, D. N. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

Article 
PubMed 

Google Scholar
 

Xu, J. et al. Single-cavity loss-enabled nanometrology. Nat. Nanotechnol. 19, 1472–1477 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Ruan, Y.-P. et al. Observation of loss-enhanced magneto-optical effect. Nat. Photonics 19, 109–115 (2025).

Article 
CAS 

Google Scholar
 

Mao, W. et al. Exceptional-point-enhanced phase sensing. Sci. Adv. 10, ead15037 (2024).

Article 

Google Scholar
 

Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Madiot, G. et al. Harnessing coupled nanolasers near exceptional points for directional emission. Sci. Adv. 10, eadr8283 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jahromi, A. K. et al. Statistical parity-time-symmetric lasing in an optical fibre network. Nat. Commun. 8, 1359 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ferrier, L. et al. Unveiling the enhancement of spontaneous emission at exceptional points. Phys. Rev. Lett. 129, 083602 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Huang, R. et al. Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2023).

Article 

Google Scholar
 

Lu, X. et al. Nonreciprocity and quantum correlations of light transport in hot atoms via reservoir engineering. Phys. Rev. Lett. 126, 223603 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, Z. et al. Chirality-induced quantum nonreciprocity. Nat. Photonics 19, 840–846 (2025).

Zhong, Q. et al. Control of spontaneous emission dynamics in microcavities with chiral exceptional surfaces. Phys. Rev. Res. 3, 013220 (2021).

Article 
CAS 

Google Scholar
 

Pick, A. et al. General theory of spontaneous emission near exceptional points. Opt. Express 25, 12325–12348 (2017).

Article 
PubMed 

Google Scholar
 

Khanbekyan, M. & Wiersig, J. Decay suppression of spontaneous emission of a single emitter in a high-Q cavity at exceptional points. Phys. Rev. Res. 2, 023375 (2020).

Article 
CAS 

Google Scholar
 

Lu, Y. et al. Anomalous spontaneous emission dynamics at chiral exceptional points. Opt. Express 30, 41784–41803 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).

Article 

Google Scholar
 

Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Larocque, H. et al. Tunable quantum emitters on large-scale foundry silicon photonics. Nat. Commun. 15, 5781 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).

Article 
CAS 

Google Scholar
 

Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yue, W. & Yi-jian, J. Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3. Opt. Mater. 23, 403–408 (2003).

Article 

Google Scholar
 

Wang, X. et al. Large-scale quantum dot-lithium niobate hybrid integrated photonic circuits enabling on-chip quantum networking. Nat. Mater. 24, 1898–1905 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Uppu, R. et al. Quantum-dot-based deterministic photon-emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 16, 1308–1317 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Ding, X. et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photonics 19, 387–391 (2025).

Article 
CAS 

Google Scholar
 

Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340–345 (2016).

Article 
CAS 

Google Scholar
 

Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. 6, eabc8268 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622–627 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Tiranov, A. et al. Collective super- and subradiant dynamics between distant optical quantum emitters. Science 379, 389–393 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Holzgrafe, J. et al. Relaxation of the electro-optic response in thin-film lithium niobate modulators. Opt. Express 32, 3619–3631 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, Y. et al. In situ three-dimensional strain engineering of solid-state quantum emitters in photonic structures towards scalable quantum networks. Nat. Commun. 16, 5564 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vogel, M. M. et al. Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots. Appl. Phys. Lett. 91, 051904 (2007).

Article 

Google Scholar
 

Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Shambat, G. et al. Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode. Nat. Commun. 2, 539 (2011).

Article 
PubMed 

Google Scholar
 

Jin, C.-Y. et al. Ultrafast non-local control of spontaneous emission. Nat. Nanotechnol. 9, 886–890 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, Y. On-chip non-Hermitian cavity quantum electrodynamics. figshare https://doi.org/10.6084/m9.figshare.31046719 (2026).