Kogut, J. B. The lattice gauge theory approach to quantum chromodynamics. Rev. Mod. Phys. 55, 775 (1983).

Article 
ADS 

Google Scholar
 

Greensite, J. The confinement problem in lattice gauge theory. Prog. Part. Nucl. Phys. 51, 1–83 (2003).

Article 
ADS 

Google Scholar
 

Sachdev, S. Emergent gauge fields and the high-temperature superconductors. Philos. Trans. A 374, 20150248 (2016).

ADS 

Google Scholar
 

Scherg, S. et al. Observing non-ergodicity due to kinetic constraints in tilted Fermi–Hubbard chains. Nat. Commun. 12, 4490 (2021).

Article 
ADS 

Google Scholar
 

Kohlert, T. et al. Exploring the regime of fragmentation in strongly tilted Fermi–Hubbard chains. Phys. Rev. Lett. 130, 010201 (2023).

Article 
ADS 

Google Scholar
 

Adler, D. et al. Observation of Hilbert space fragmentation and fractonic excitations in 2D. Nature 636, 80 (2024).

Article 
ADS 

Google Scholar
 

Kim, K., Yang, F., Mølmer, K. & Ahn, J. Realization of an extremely anisotropic Heisenberg magnet in Rydberg atom arrays. Phys. Rev. X 14, 011025 (2024).


Google Scholar
 

Zhao, L., Datla, P. R., Tian, W., Aliyu, M. M. & Loh, H. Observation of quantum thermalization restricted to Hilbert space fragments and \({{\mathbb{Z}}}_{2k}\) scars. Phys. Rev. X 15, 011035 (2025).

Honda, K. et al. Observation of slow relaxation due to Hilbert space fragmentation in strongly interacting Bose–Hubbard chains. Sci. Adv. 11, eadv3255 (2025).

Article 
ADS 

Google Scholar
 

Gonzalez-Cuadra, D. et al. Observation of string breaking on a (2 + 1)D Rydberg quantum simulator. Nature 642, 321–326 (2025).

Article 
ADS 

Google Scholar
 

Tagliacozzo, L., Celi, A., Orland, P. & Lewenstein, M. Simulations of non-Abelian gauge theories with optical lattices. Nat. Commun. 4, 2615 (2013).

Article 
ADS 

Google Scholar
 

Banerjee, D. et al. Atomic quantum simulation of dynamical gauge fields coupled to Fermionic matter: from string breaking to evolution after a quench. Phys. Rev. Lett. 109, 175302 (2012).

Article 
ADS 

Google Scholar
 

Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).

Article 
ADS 

Google Scholar
 

Zohar, E., Cirac, J. I. & Reznik, B. Cold-atom quantum simulator for SU(2) Yang–Mills lattice gauge theory. Phys. Rev. Lett. 110, 125304 (2013).

Article 
ADS 

Google Scholar
 

Schweizer, C. et al. Floquet approach to \({{\mathbb{Z}}}_{2}\) lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).

Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311–314 (2022).

Article 
ADS 
MathSciNet 

Google Scholar
 

Halimeh, J. C., Aidelsburger, M., Grusdt, F., Hauke, P. & Yang, B. Cold-atom quantum simulators of gauge theories. Nat. Phys. 21, 25–36 (2025).

Article 

Google Scholar
 

Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).


Google Scholar
 

Bauer, C. W., Davoudi, Z., Klco, N. & Savage, M. J. Quantum simulation of fundamental particles and forces. Nat. Rev. Phys. 5, 420–432 (2023).

Article 

Google Scholar
 

Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

Article 
ADS 

Google Scholar
 

Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

Article 
ADS 

Google Scholar
 

Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).

Article 

Google Scholar
 

Smith, A., Knolle, J., Moessner, R. & Kovrizhin, D. L. Dynamical localization in \({{\mathbb{Z}}}_{2}\) lattice gauge theories. Phys. Rev. B 97, 245137 (2018).

Karpov, P., Verdel, R., Huang, Y.-P., Schmitt, M. & Heyl, M. Disorder-free localization in an interacting 2D lattice gauge theory. Phys. Rev. Lett. 126, 130401 (2021).

Article 
ADS 

Google Scholar
 

Banerjee, D. & Sen, A. Quantum scars from zero modes in an Abelian lattice gauge theory on ladders. Phys. Rev. Lett. 126, 220601 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Aramthottil, A. S. et al. Scar states in deconfined \({{\mathbb{Z}}}_{2}\) lattice gauge theories. Phys. Rev. B 106, L041101 (2022).

Halimeh, J. C., Barbiero, L., Hauke, P., Grusdt, F. & Bohrdt, A. Robust quantum many-body scars in lattice gauge theories. Quantum 7, 1004 (2023).

Article 

Google Scholar
 

Desaules, J.-Y. et al. Weak ergodicity breaking in the Schwinger model. Phys. Rev. B 107, L201105 (2023).

Article 
ADS 

Google Scholar
 

Desaules, J.-Y. et al. Prominent quantum many-body scars in a truncated Schwinger model. Phys. Rev. B 107, 205112 (2023).

Article 
ADS 

Google Scholar
 

Gyawali, G. et al. Observation of disorder-free localization and efficient disorder averaging on a quantum processor. Preprint at https://arxiv.org/abs/2410.06557 (2024).

Morong, W. et al. Observation of Stark many-body localization without disorder. Nature 599, 393–398 (2021).

Article 
ADS 

Google Scholar
 

Sala, P., Rakovszky, T., Verresen, R., Knap, M. & Pollmann, F. Ergodicity breaking arising from Hilbert space fragmentation in dipole-conserving Hamiltonians. Phys. Rev. X 10, 011047 (2020).


Google Scholar
 

Khemani, V., Hermele, M. & Nandkishore, R. Localization from Hilbert space shattering: From theory to physical realizations. Phys. Rev. B 101, 174204 (2020).

Article 
ADS 

Google Scholar
 

Yang, Z.-C., Liu, F., Gorshkov, A. V. & Iadecola, T. Hilbert-space fragmentation from strict confinement. Phys. Rev. Lett. 124, 207602 (2020).

Article 
ADS 

Google Scholar
 

Jeyaretnam, J., Bhore, T., Osborne, J. J., Halimeh, J. C. & Papić, Z. Hilbert space fragmentation at the origin of disorder-free localization in the lattice Schwinger model. Commun. Phys. 8, 172 (2025).

Desaules, J.-Y. et al. Ergodicity breaking under confinement in cold-atom quantum simulators. Quantum 8, 1274 (2024).

Article 

Google Scholar
 

Ciavarella, A. N., Bauer, C. W. & Halimeh, J. C. Generic Hilbert space fragmentation in Kogut–Susskind lattice gauge theories. Phys. Rev. D 112, L091501 (2025).

Article 
ADS 
MathSciNet 

Google Scholar
 

Wang, Y.-Y. et al. Exploring Hilbert-space fragmentation on a superconducting processor. PRX Quantum 6, 010325 (2025).

Article 
ADS 

Google Scholar
 

Karch, S. et al. Probing quantum many-body dynamics using subsystem Loschmidt echos. Preprint at https://arxiv.org/abs/2501.16995 (2025).

Moudgalya, S., Bernevig, B. A. & Regnault, N. Quantum many-body scars and Hilbert space fragmentation: a review of exact results. Rep. Prog. Phys. 85, 086501 (2022).

Article 
ADS 
MathSciNet 

Google Scholar
 

Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046 (1991).

Article 
ADS 

Google Scholar
 

Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

Article 
ADS 

Google Scholar
 

Rakovszky, T., Sala, P., Verresen, R., Knap, M. & Pollmann, F. Statistical localization: from strong fragmentation to strong edge modes. Phys. Rev. B 101, 125126 (2020).

Article 
ADS 

Google Scholar
 

Chandran, A., Kim, I. H., Vidal, G. & Abanin, D. A. Constructing local integrals of motion in the many-body localized phase. Phys. Rev. B 91, 085425 (2015).

Article 
ADS 

Google Scholar
 

Imbrie, J. Z., Ros, V. & Scardicchio, A. Local integrals of motion in many-body localized systems. Ann. Phys. (Berlin) 529, 1600278 (2017).

Article 
ADS 
MathSciNet 

Google Scholar
 

Rademaker, L., Ortuño, M. & Somoza, A. M. Many-body localization from the perspective of integrals of motion. Ann. Phys. 529, 1600322 (2017).

Article 

Google Scholar
 

Singh, H., Ware, B., Vasseur, R. & Gopalakrishnan, S. Local integrals of motion and the quasiperiodic many-body localization transition. Phys. Rev. B 103, L220201 (2021).

Article 
ADS 

Google Scholar
 

Ros, V., Müller, M. & Scardicchio, A. Integrals of motion in the many-body localized phase. Nucl. Phys. B 891, 420–465 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bertoni, C., Eisert, J., Kshetrimayum, A., Nietner, A. & Thomson, S. Local integrals of motion and the stability of many-body localization in Wannier-Stark potentials. Phys. Rev. B 109, 024206 (2024).

Article 
ADS 

Google Scholar
 

Wahl, T. B. & Béri, B. Local integrals of motion for topologically ordered many-body localized systems. Phys. Rev. Res. 2, 033099 (2020).

Article 

Google Scholar
 

Marcuzzi, M. et al. Facilitation dynamics and localization phenomena in Rydberg lattice gases with position disorder. Phys. Rev. Lett. 118, 063606 (2017).

Article 
ADS 

Google Scholar
 

Magoni, M., Mazza, P. P. & Lesanovsky, I. Emergent Bloch oscillations in a kinetically constrained Rydberg spin lattice. Phys. Rev. Lett. 126, 103002 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Hart, O. Exact Mazur bounds in the pair-flip model and beyond. SciPost Phys. 7, 040 (2024).

Article 

Google Scholar
 

Hahn, D., McClarty, P. A. & Luitz, D. J. Information dynamics in a model with Hilbert space fragmentation. SciPost Phys. 11, 074 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Choi, J. et al. Preparing random states and benchmarking with many-body quantum chaos. Nature 613, 468–473 (2023).

Article 
ADS 

Google Scholar
 

Pilatowsky-Cameo, S., Dag, C. B., Ho, W. W. & Choi, S. Complete Hilbert-space ergodicity in quantum dynamics of generalized Fibonacci drives. Phys. Rev. Lett. 131, 250401 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Pilatowsky-Cameo, S., Marvian, I., Choi, S. & Ho, W. W. Hilbert-space ergodicity in driven quantum systems: obstructions and designs. Phys. Rev. X 14, 041059 (2024).


Google Scholar
 

Ghosh, S., Langlett, C. M., Hunter-Jones, N. & Rodriguez-Nieva, J. F. Late-time ensembles of quantum states in quantum chaotic systems. Phys. Rev. B 112, 094302 (2025).

Article 
ADS 

Google Scholar
 

Le, Y., Zhang, Y., Gopalakrishnan, S., Rigol, M. & Weiss, D. S. Observation of hydrodynamization and local prethermalization in 1D Bose gases. Nature 618, 494–499 (2023).

Article 
ADS 

Google Scholar
 

Fendley, P. Strong zero modes and eigenstate phase transitions in the XYZ/interacting Majorana chain. J. Phys. A 49, 30LT01 (2016).

Article 
MathSciNet 

Google Scholar
 

Olund, C. T., Yao, N. Y. & Kemp, J. Boundary strong zero modes. Phys. Rev. B 111, L201114 (2025).

Article 
ADS 

Google Scholar
 

Else, D. V., Fendley, P., Kemp, J. & Nayak, C. Prethermal strong zero modes and topological qubits. Phys. Rev. X 7, 041062 (2017).


Google Scholar
 

Kempkes, S. et al. Robust zero-energy modes in an electronic higher-order topological insulator. Nat. Mater. 18, 1292–1297 (2019).

Article 
ADS 

Google Scholar
 

Verresen, R., Jones, N. G. & Pollmann, F. Topology and edge modes in quantum critical chains. Phys. Rev. Lett. 120, 057001 (2018).

Article 
ADS 

Google Scholar
 

Verresen, R., Thorngren, R., Jones, N. G. & Pollmann, F. Gapless topological phases and symmetry-enriched quantum criticality. Phys. Rev. X 11, 041059 (2021).


Google Scholar
 

Morningstar, A., Khemani, V. & Huse, D. A. Kinetically constrained freezing transition in a dipole-conserving system. Phys. Rev. B 101, 214205 (2020).

Article 
ADS 

Google Scholar
 

Wang, C. & Yang, Z.-C. Freezing transition in the particle-conserving East model. Phys. Rev. B 108, 144308 (2023).

Article 
ADS 

Google Scholar
 

Pozderac, C., Speck, S., Feng, X., Huse, D. A. & Skinner, B. Exact solution for the filling-induced thermalization transition in a one-dimensional fracton system. Phys. Rev. B 107, 045137 (2023).

Article 
ADS 

Google Scholar
 

Classen-Howes, J., Senese, R. & Prakash, A. Universal freezing transitions of dipole-conserving chains. Phys. Rev. B 112, 125148 (2025).

Article 
ADS 

Google Scholar
 

Tian, W. et al. Parallel assembly of arbitrary defect-free atom arrays with a multitweezer algorithm. Phys. Rev. Applied 19, 034048 (2023).

Article 
ADS 

Google Scholar
 

Labuhn, H. et al. Single-atom addressing in microtraps for quantum-state engineering using Rydberg atoms. Phys. Rev. A 90, 023415 (2014).

Article 
ADS 

Google Scholar
 

Yang, F., Yarloo, H., Zhang, H.-C., Mølmer, K. & Nielsen, A. E. Probing Hilbert space fragmentation with strongly interacting Rydberg atoms. Phys. Rev. B 111, 144313 (2025).

Article 
ADS 

Google Scholar
 

Bravyi, S., DiVincenzo, D. P. & Loss, D. Schrieffer–Wolff transformation for quantum many-body systems. Ann. Phys. 326, 2793–2826 (2011).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bluvstein, D. et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science 371, 1355–1359 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Lesanovsky, I. & Katsura, H. Interacting Fibonacci anyons in a Rydberg gas. Phys. Rev. A 86, 041601 (2012).

Article 
ADS 

Google Scholar
 

Datla, P. R. et al. Dataset for ‘Statistical localization of U(1) lattice gauge theory in a Rydberg simulator’. Zenodo https://doi.org/10.5281/zenodo.18012627 (2026).