Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

Article 
ADS 

Google Scholar
 

Sevilla, J. et al. Compute trends across three eras of machine learning. In International Joint Conference on Neural Networks (IJCNN), Padua, Italy 1–8 (IEEE, 2022); https://doi.org/10.1109/IJCNN55064.2022.9891914.

Amodei, D. & Hernandez, D. AI and compute. https://openai.com/index/ai-and-compute/ (2018).

Hernandez, D. & Brown, T. AI and efficiency. https://openai.com/index/ai-and-efficiency/ (2020).

GPT-4o Mini: Advancing Cost-Efficient Intelligence (OpenAI, accessed 5 August 2024); https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for deep learning in NLP. Preprint at https://arxiv.org/abs/1906.02243 (2019).

Patterson, D. et al. Carbon emissions and large neural network training (2021).

Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

Article 
ADS 

Google Scholar
 

Tan, M. et al. Photonic signal processor based on a Kerr microcomb for real-time video image processing. Commun. Eng. 2, 94 (2023).

Article 

Google Scholar
 

Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).

Article 
ADS 

Google Scholar
 

Chen, Y. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023).

Article 
ADS 

Google Scholar
 

Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

Article 
ADS 

Google Scholar
 

Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).

Article 
ADS 

Google Scholar
 

Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2022).

Article 
ADS 

Google Scholar
 

Yu, S. et al. A universal programmable Gaussian boson sampler for drug discovery. Nat. Comput. Sci. 3, 839–848 (2023).

Article 
ADS 

Google Scholar
 

Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134. https://doi.org/10.1109/SFCS.1994.365700 (1994).

Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing 212–219 (Association for Computing Machinery, 1996). https://doi.org/10.1145/237814.237866.

Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992).

Article 
MATH 

Google Scholar
 

Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000).

Article 
ADS 

Google Scholar
 

Laudenbach, F. et al. Continuous-variable quantum key distribution with Gaussian modulation — the theory of practical implementations. Adv. Quantum Technol. 1, 1800011 (2018).

Article 

Google Scholar
 

Ralph, T. C. Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999).

Article 
ADS 
MathSciNet 

Google Scholar
 

Tennie, F. & Palmer, T. N. Quantum computers for weather and climate prediction: the good, the bad, and the noisy. Bull. Am. Meteorol. Soc. 104, E488–E500 (2023).

Article 
ADS 

Google Scholar
 

Suhas, S. & Divya, S. Quantum-improved weather forecasting: integrating quantum machine learning for precise prediction and disaster mitigation. In 2023 International Conference on Quantum Technologies, Communications, Computing, Hardware and Embedded Systems Security (iQ-CCHESS) 1–7. https://doi.org/10.1109/iQ-CCHESS56596.2023.10391714 (2023).

Egger, D. J., García Gutiérrez, R., Mestre, J. C. & Woerner, S. Credit risk analysis using quantum computers. IEEE Trans. Comput. 70, 2136–2145 (2021).

Article 
MathSciNet 

Google Scholar
 

Dri, E. et al. A more general quantum credit risk analysis framework. Entropy 25, 593 (2023).

Article 
ADS 

Google Scholar
 

Herman, D. et al. Quantum computing for finance. Nat. Rev. Phys. 5, 450–465 (2023).

Article 

Google Scholar
 

Woerner, S. & Egger, D. J. Quantum risk analysis. npj Quantum Inf. 5, 15 (2019).

Article 
ADS 

Google Scholar
 

Dri, E., Giusto, E., Aita, A. & Montrucchio, B. Towards practical quantum credit risk analysis. J. Phys. Conf. Ser. 2416, 012002 (2022).

Article 

Google Scholar
 

Jørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photon. 16, 798–802 (2022).

Article 
ADS 

Google Scholar
 

Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photon. 17, 781–790 (2023).

Article 
ADS 

Google Scholar
 

Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13, 7862 (2022).

Article 
ADS 

Google Scholar
 

Pang, X. et al. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz). Opt. Express 19, 24944–24949 (2011).

Article 
ADS 

Google Scholar
 

Pang, X. et al. 25 Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks. IEEE Photon. J. 4, 691–698 (2012).

Article 
ADS 

Google Scholar
 

Li, F. et al. Optical I/Q modulation utilizing dual-drive MZM for fiber-wireless integration system at Ka-band. Opt. Lett. 44, 4235–4238 (2019).

Article 
ADS 

Google Scholar
 

Han, Y. & Li, G. Coherent optical communication using polarization multiple-input–multiple-output. Opt. Express 13, 7527–7534 (2005).

Article 
ADS 

Google Scholar
 

Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).

Article 
ADS 

Google Scholar
 

Hamerly, R. et al. Netcast: low-power edge computing with WDM-defined optical neural networks. J. Lightwave Technol. 42, 7795–7806 (2024).

Article 

Google Scholar
 

Brückerhoff-Plückelmann, F. et al. A large scale photonic matrix processor enabled by charge accumulation. Nanophotonics 12, 819–825 (2023).

Article 

Google Scholar
 

Zhang, J., Ma, B., Zhao, Y. & Zou, W. A large-scale photonic CNN based on spike coding and temporal integration. IEEE J. Sel. Top. Quantum Electron. 29, 1–10 (2023).


Google Scholar
 

Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

Article 
ADS 

Google Scholar
 

Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

Article 
ADS 

Google Scholar
 

Roztocki, P. et al. Practical system for the generation of pulsed quantum frequency combs. Opt. Express 25, 18940–18949 (2017).

Article 
ADS 

Google Scholar
 

Zhang, L. et al. On-chip parallel processing of quantum frequency comb. npj Quantum Inf. 9, 57 (2023).

Article 
ADS 

Google Scholar
 

Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

Article 
ADS 

Google Scholar
 

Zhang, L. et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 4, 218–227 (2021).

Article 

Google Scholar
 

Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 (2020).

Article 

Google Scholar
 

Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

Article 
ADS 

Google Scholar
 

Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).

Article 
ADS 

Google Scholar
 

Porte, X. et al. A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser. J. Phys. Photon. 3, 024017 (2021).

Article 

Google Scholar
 

Liu, Y. et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun. 10, 3263 (2019).

Article 
ADS 

Google Scholar
 

Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).

Article 
ADS 

Google Scholar
 

Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).

Article 
ADS 

Google Scholar
 

Li, J., Hung, Y.-C., Kulce, O., Mengu, D. & Ozcan, A. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. Light Sci. Appl. 11, 153 (2022).

Article 
ADS 

Google Scholar
 

Dorrah, A. H., Rubin, N. A., Zaidi, A., Tamagnone, M. & Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photon. 15, 287–296 (2021).

Article 
ADS 

Google Scholar
 

Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

Article 
ADS 

Google Scholar
 

Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

Article 
ADS 

Google Scholar
 

Heilmann, R., Gräfe, M., Nolte, S. & Szameit, A. Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli-X and rotation gates for polarisation qubits. Sci. Rep. 4, 4118 (2014).

Article 

Google Scholar
 

Wang, J. et al. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics 11, 645–680 (2022).

Article 
ADS 

Google Scholar
 

Liu, S., Lou, Y. & Jing, J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11, 3875 (2020).

Article 
ADS 

Google Scholar
 

Ren, H. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020).

Article 
ADS 

Google Scholar
 

Zhao, Z. et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines. Nat. Commun. 11, 4099 (2020).

Article 
ADS 

Google Scholar
 

Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

Article 
ADS 

Google Scholar
 

Zahidy, M. et al. Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication. Nanophotonics 11, 821–827 (2022).

Article 

Google Scholar
 

Mehonic, A. et al. Roadmap to neuromorphic computing with emerging technologies. APL Mater. 12, 109201 (2024).

Article 

Google Scholar
 

Amitié/AEC-3 — Submarine Networks (Submarine Networks, accessed 2 December 2024); https://www.submarinenetworks.com/en/systems/trans-atlantic/amitie.

NVIDIA Co-Packaged Silicon Photonics Networking Switches (NVIDIA, accessed 7 April 2025); https://www.nvidia.com/en-us/networking/products/silicon-photonics/.

NVIDIA Announces Spectrum-X Photonics, Co-Packaged Optics Networking Switches to Scale AI Factories to Millions of GPUs (NVIDIA, accessed 7 April 2025); https://nvidianews.nvidia.com/news/nvidia-spectrum-x-co-packaged-optics-networking-switches-ai-factories.

Antonik, P., Marsal, N., Brunner, D. & Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell. 1, 530–537 (2019).

Article 

Google Scholar
 

Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

Article 
ADS 

Google Scholar
 

Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).

Article 

Google Scholar
 

Brückerhoff-Plückelmann, F. et al. Probabilistic photonic computing with chaotic light. Nat. Commun. 15, 10445 (2024).

Article 

Google Scholar
 

Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).

Article 
ADS 

Google Scholar
 

Cheng, J. et al. Multimodal deep learning using on-chip diffractive optics with in situ training capability. Nat. Commun. 15, 6189 (2024).

Article 

Google Scholar
 

Sludds, A. et al. Delocalized photonic deep learning on the internet’s edge. Science 378, 270–276 (2022).

Article 
ADS 

Google Scholar
 

Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).

Article 
ADS 

Google Scholar
 

Xu, R. et al. Hybrid photonic integrated circuits for neuromorphic computing [Invited]. Opt. Mater. Express 13, 3553–3606 (2023).

Article 
ADS 

Google Scholar
 

Abu-Mostafa, Y. S. & Psaltis, D. Optical neural computers. Sci. Am. 256, 88–95 (1987).

Article 

Google Scholar
 

Kalinin, K. P. et al. Analog iterative machine (AIM): using light to solve quadratic optimization problems with mixed variables. 41 (2023).

Jaeger, H., Noheda, B. & van der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).

Article 
ADS 

Google Scholar
 

Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

Article 
ADS 

Google Scholar
 

Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).

Article 
ADS 

Google Scholar
 

Skalli, A. et al. Annealing-inspired training of an optical neural network with ternary weights. Commun. Phys. 8, 1–10 (2025).

Article 

Google Scholar
 

Abreu, S. et al. A photonics perspective on computing with physical substrates. Rev. Phys. 12, 100093 (2024).

Article 

Google Scholar
 

Jouppi, N. P. et al. TPU v4: an optically reconfigurable supercomputer for machine learning with hardware support for embeddings. In Proc. 50th Annual International Symposium on Computer Architecture 1–14 (Association for Computing Machinery, 2023).

Akopyan, F. et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 1537–1557 (2015).

Article 

Google Scholar
 

Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nat. Electron. 6, 680–693 (2023).

Article 

Google Scholar
 

Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

Article 
ADS 

Google Scholar
 

Meng, X. et al. High-integrated photonic tensor core utilizing high-dimensional lightwave and microwave multidomain multiplexing. Light Sci. Appl. 14, 27 (2025).

Article 

Google Scholar
 

Fu, T. et al. Optical neural networks: progress and challenges. Light Sci. Appl. 13, 263 (2024).

Article 

Google Scholar
 

El Srouji, L. et al. Photonic and optoelectronic neuromorphic computing. APL Photon. 7, 051101 (2022).

Article 
ADS 

Google Scholar
 

Lima, T. F., de Shastri, B. J., Tait, A. N., Nahmias, M. A. & Prucnal, P. R. Progress in neuromorphic photonics. Nanophotonics 6, 577–599 (2017).

Article 

Google Scholar
 

Meng, X. et al. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 14, 3000 (2023).

Article 
ADS 

Google Scholar
 

Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).

Article 
ADS 

Google Scholar
 

Lima, T. Fde et al. Primer on silicon neuromorphic photonic processors: architecture and compiler. Nanophotonics 9, 4055–4073 (2020).

Article 

Google Scholar
 

Karunaratne, G. et al. In-memory hyperdimensional computing. Nat. Electron. 3, 327–337 (2020).

Article 

Google Scholar
 

Karunaratne, G. et al. Robust high-dimensional memory-augmented neural networks. Nat. Commun. 12, 2468 (2021).

Article 
ADS 

Google Scholar
 

Hersche, M., Zeqiri, M., Benini, L., Sebastian, A. & Rahimi, A. A neuro-vector-symbolic architecture for solving Raven’s progressive matrices. Nat. Mach. Intell. 5, 363–375 (2023).

Article 

Google Scholar
 

De Marinis, L., Cococcioni, M., Castoldi, P. & Andriolli, N. Photonic neural networks: a survey. IEEE Access 7, 175827–175841 (2019).

Article 

Google Scholar
 

Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).

Article 
ADS 
MathSciNet 

Google Scholar
 

Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

Article 
ADS 

Google Scholar
 

Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

Article 
ADS 

Google Scholar
 

Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

Article 
ADS 

Google Scholar
 

Wiebe, N., Braun, D. & Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012).

Article 
ADS 

Google Scholar
 

Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014).

Article 

Google Scholar
 

Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014).

Article 
ADS 

Google Scholar
 

Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

Article 

Google Scholar
 

Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar
 

Cai, X.-D. et al. Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501 (2013).

Article 
ADS 

Google Scholar
 

Aghaee Rad, H. et al. Scaling and networking a modular photonic quantum computer. Nature 638, 912–919 (2025).

Article 

Google Scholar
 

Alexander, K. et al. A manufacturable platform for photonic quantum computing. Nature https://doi.org/10.1038/s41586-025-08820-7 (2025).

Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

Article 

Google Scholar
 

Schuld, M. & Killoran, N. Is quantum advantage the right goal for quantum machine learning? PRX Quantum 3, 030101 (2022).

Article 
ADS 

Google Scholar
 

Bowles, J., Ahmed, S. & Schuld, M. Better than classical? The subtle art of benchmarking quantum machine learning models. Preprint at https://arxiv.org/abs/2403.07059 (2024).

Schütte, N.-E., Götting, N., Müntinga, H., List, M. & Gies, C. Expressive limits of quantum reservoir computing. Preprint at https://arxiv.org/abs/2501.15528 (2025).

Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).

Article 

Google Scholar
 

Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340 (2016).

Article 
ADS 

Google Scholar
 

Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

Article 
ADS 

Google Scholar
 

Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. https://doi.org/10.1126/sciadv.abc8268 (2020).

Le Jeannic, H. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).

Article 

Google Scholar
 

Nielsen, K. H. et al. Programmable nonlinear quantum photonic circuits. Preprint at https://arxiv.org/abs/2405.17941v1 (2024).

Liu, S. et al. Violation of Bell inequality by photon scattering on a two-level emitter. Nat. Phys. https://doi.org/10.1038/s41567-024-02543-8 (2024).

De Santis, L. et al. A solid-state single-photon filter. Nat. Nanotechnol. 12, 663–667 (2017).

Article 
ADS 

Google Scholar
 

Fujii, K. & Nakajima, K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 8, 024030 (2017).

Article 
ADS 

Google Scholar
 

Spagnolo, M. et al. Experimental photonic quantum memristor. Nat. Photon. 16, 318–323 (2022).

Article 
ADS 

Google Scholar
 

Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar
 

Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).

Article 
ADS 

Google Scholar
 

Menicucci, N. C. Temporal-mode continuous-variable cluster states using linear optics. Phys. Rev. A 83, 062314 (2011).

Article 
ADS 

Google Scholar
 

Lu, J., Li, M., Zou, C.-L., Al Sayem, A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654–1659 (2020).

Article 
ADS 

Google Scholar
 

Zhao, M. & Fang, K. InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio. Optica 9, 258–263 (2022).

Article 
ADS 

Google Scholar
 

Yanagimoto, R. et al. Engineering a Kerr-based deterministic cubic phase gate via Gaussian operations. Phys. Rev. Lett. 124, 240503 (2020).

Article 
ADS 

Google Scholar
 

Yanagimoto, R. et al. Onset of non-Gaussian quantum physics in pulsed squeezing with mesoscopic fields. Optica 9, 379–390 (2022).

Article 
ADS 

Google Scholar
 

Yanagimoto, R., Nehra, R., Ng, E., Marandi, A. & Mabuchi, H. Engineering cubic quantum nondemolition Hamiltonian with mesoscopic optical parametric interactions. Preprint at https://arxiv.org/abs/2305.03260 (2023).

Yanagimoto, R. et al. Quantum nondemolition measurements with optical parametric amplifiers for ultrafast universal quantum information processing. PRX Quantum 4, 010333 (2023).

Article 
ADS 

Google Scholar
 

Yanagimoto, R. et al. Mesoscopic ultrafast nonlinear optics — the emergence of multimode quantum non-Gaussian physics. Optica 11, 896–918 (2024).

Article 

Google Scholar
 

Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

Article 
ADS 

Google Scholar
 

Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

Article 
ADS 

Google Scholar
 

Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

Article 
ADS 

Google Scholar
 

Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

Article 
ADS 

Google Scholar
 

Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).

Article 
ADS 

Google Scholar
 

Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

Article 
ADS 

Google Scholar
 

Carosini, L. et al. Programmable multiphoton quantum interference in a single spatial mode. Sci. Adv. 10, eadj0993 (2024).

Article 

Google Scholar
 

Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).

Article 
ADS 

Google Scholar
 

Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

Article 

Google Scholar
 

Hazan, A. & Ezra Tsur, E. Neuromorphic analog implementation of neural engineering framework-inspired spiking neuron for high-dimensional representation. Front. Neurosci. 15, 627221 (2021).

Article 

Google Scholar
 

Semenova, N., Larger, L. & Brunner, D. Understanding and mitigating noise in trained deep neural networks. Neural Netw. 146, 151–160 (2022).

Article 

Google Scholar
 

Tang, G. et al. SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges. Front. Neurosci. 17, 1187252 (2023).

Article 

Google Scholar
 

Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6, 041303 (2019).

Article 
ADS 

Google Scholar