Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).
Sevilla, J. et al. Compute trends across three eras of machine learning. In International Joint Conference on Neural Networks (IJCNN), Padua, Italy 1–8 (IEEE, 2022); https://doi.org/10.1109/IJCNN55064.2022.9891914.
Amodei, D. & Hernandez, D. AI and compute. https://openai.com/index/ai-and-compute/ (2018).
Hernandez, D. & Brown, T. AI and efficiency. https://openai.com/index/ai-and-efficiency/ (2020).
GPT-4o Mini: Advancing Cost-Efficient Intelligence (OpenAI, accessed 5 August 2024); https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.
Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for deep learning in NLP. Preprint at https://arxiv.org/abs/1906.02243 (2019).
Patterson, D. et al. Carbon emissions and large neural network training (2021).
Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
Tan, M. et al. Photonic signal processor based on a Kerr microcomb for real-time video image processing. Commun. Eng. 2, 94 (2023).
Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).
Chen, Y. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023).
Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).
Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).
Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2022).
Yu, S. et al. A universal programmable Gaussian boson sampler for drug discovery. Nat. Comput. Sci. 3, 839–848 (2023).
Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134. https://doi.org/10.1109/SFCS.1994.365700 (1994).
Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing 212–219 (Association for Computing Machinery, 1996). https://doi.org/10.1145/237814.237866.
Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992).
Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000).
Laudenbach, F. et al. Continuous-variable quantum key distribution with Gaussian modulation — the theory of practical implementations. Adv. Quantum Technol. 1, 1800011 (2018).
Ralph, T. C. Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999).
Tennie, F. & Palmer, T. N. Quantum computers for weather and climate prediction: the good, the bad, and the noisy. Bull. Am. Meteorol. Soc. 104, E488–E500 (2023).
Suhas, S. & Divya, S. Quantum-improved weather forecasting: integrating quantum machine learning for precise prediction and disaster mitigation. In 2023 International Conference on Quantum Technologies, Communications, Computing, Hardware and Embedded Systems Security (iQ-CCHESS) 1–7. https://doi.org/10.1109/iQ-CCHESS56596.2023.10391714 (2023).
Egger, D. J., García Gutiérrez, R., Mestre, J. C. & Woerner, S. Credit risk analysis using quantum computers. IEEE Trans. Comput. 70, 2136–2145 (2021).
Dri, E. et al. A more general quantum credit risk analysis framework. Entropy 25, 593 (2023).
Herman, D. et al. Quantum computing for finance. Nat. Rev. Phys. 5, 450–465 (2023).
Woerner, S. & Egger, D. J. Quantum risk analysis. npj Quantum Inf. 5, 15 (2019).
Dri, E., Giusto, E., Aita, A. & Montrucchio, B. Towards practical quantum credit risk analysis. J. Phys. Conf. Ser. 2416, 012002 (2022).
Jørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photon. 16, 798–802 (2022).
Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photon. 17, 781–790 (2023).
Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13, 7862 (2022).
Pang, X. et al. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz). Opt. Express 19, 24944–24949 (2011).
Pang, X. et al. 25 Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks. IEEE Photon. J. 4, 691–698 (2012).
Li, F. et al. Optical I/Q modulation utilizing dual-drive MZM for fiber-wireless integration system at Ka-band. Opt. Lett. 44, 4235–4238 (2019).
Han, Y. & Li, G. Coherent optical communication using polarization multiple-input–multiple-output. Opt. Express 13, 7527–7534 (2005).
Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).
Hamerly, R. et al. Netcast: low-power edge computing with WDM-defined optical neural networks. J. Lightwave Technol. 42, 7795–7806 (2024).
Brückerhoff-Plückelmann, F. et al. A large scale photonic matrix processor enabled by charge accumulation. Nanophotonics 12, 819–825 (2023).
Zhang, J., Ma, B., Zhao, Y. & Zou, W. A large-scale photonic CNN based on spike coding and temporal integration. IEEE J. Sel. Top. Quantum Electron. 29, 1–10 (2023).
Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
Roztocki, P. et al. Practical system for the generation of pulsed quantum frequency combs. Opt. Express 25, 18940–18949 (2017).
Zhang, L. et al. On-chip parallel processing of quantum frequency comb. npj Quantum Inf. 9, 57 (2023).
Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).
Zhang, L. et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 4, 218–227 (2021).
Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 (2020).
Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).
Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).
Porte, X. et al. A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser. J. Phys. Photon. 3, 024017 (2021).
Liu, Y. et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun. 10, 3263 (2019).
Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).
Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).
Li, J., Hung, Y.-C., Kulce, O., Mengu, D. & Ozcan, A. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. Light Sci. Appl. 11, 153 (2022).
Dorrah, A. H., Rubin, N. A., Zaidi, A., Tamagnone, M. & Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photon. 15, 287–296 (2021).
Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).
Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).
Heilmann, R., Gräfe, M., Nolte, S. & Szameit, A. Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli-X and rotation gates for polarisation qubits. Sci. Rep. 4, 4118 (2014).
Wang, J. et al. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics 11, 645–680 (2022).
Liu, S., Lou, Y. & Jing, J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11, 3875 (2020).
Ren, H. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020).
Zhao, Z. et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines. Nat. Commun. 11, 4099 (2020).
Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).
Zahidy, M. et al. Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication. Nanophotonics 11, 821–827 (2022).
Mehonic, A. et al. Roadmap to neuromorphic computing with emerging technologies. APL Mater. 12, 109201 (2024).
Amitié/AEC-3 — Submarine Networks (Submarine Networks, accessed 2 December 2024); https://www.submarinenetworks.com/en/systems/trans-atlantic/amitie.
NVIDIA Co-Packaged Silicon Photonics Networking Switches (NVIDIA, accessed 7 April 2025); https://www.nvidia.com/en-us/networking/products/silicon-photonics/.
NVIDIA Announces Spectrum-X Photonics, Co-Packaged Optics Networking Switches to Scale AI Factories to Millions of GPUs (NVIDIA, accessed 7 April 2025); https://nvidianews.nvidia.com/news/nvidia-spectrum-x-co-packaged-optics-networking-switches-ai-factories.
Antonik, P., Marsal, N., Brunner, D. & Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell. 1, 530–537 (2019).
Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).
Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).
Brückerhoff-Plückelmann, F. et al. Probabilistic photonic computing with chaotic light. Nat. Commun. 15, 10445 (2024).
Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).
Cheng, J. et al. Multimodal deep learning using on-chip diffractive optics with in situ training capability. Nat. Commun. 15, 6189 (2024).
Sludds, A. et al. Delocalized photonic deep learning on the internet’s edge. Science 378, 270–276 (2022).
Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).
Xu, R. et al. Hybrid photonic integrated circuits for neuromorphic computing [Invited]. Opt. Mater. Express 13, 3553–3606 (2023).
Abu-Mostafa, Y. S. & Psaltis, D. Optical neural computers. Sci. Am. 256, 88–95 (1987).
Kalinin, K. P. et al. Analog iterative machine (AIM): using light to solve quadratic optimization problems with mixed variables. 41 (2023).
Jaeger, H., Noheda, B. & van der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).
Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).
Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).
Skalli, A. et al. Annealing-inspired training of an optical neural network with ternary weights. Commun. Phys. 8, 1–10 (2025).
Abreu, S. et al. A photonics perspective on computing with physical substrates. Rev. Phys. 12, 100093 (2024).
Jouppi, N. P. et al. TPU v4: an optically reconfigurable supercomputer for machine learning with hardware support for embeddings. In Proc. 50th Annual International Symposium on Computer Architecture 1–14 (Association for Computing Machinery, 2023).
Akopyan, F. et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 1537–1557 (2015).
Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nat. Electron. 6, 680–693 (2023).
Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).
Meng, X. et al. High-integrated photonic tensor core utilizing high-dimensional lightwave and microwave multidomain multiplexing. Light Sci. Appl. 14, 27 (2025).
Fu, T. et al. Optical neural networks: progress and challenges. Light Sci. Appl. 13, 263 (2024).
El Srouji, L. et al. Photonic and optoelectronic neuromorphic computing. APL Photon. 7, 051101 (2022).
Lima, T. F., de Shastri, B. J., Tait, A. N., Nahmias, M. A. & Prucnal, P. R. Progress in neuromorphic photonics. Nanophotonics 6, 577–599 (2017).
Meng, X. et al. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 14, 3000 (2023).
Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).
Lima, T. Fde et al. Primer on silicon neuromorphic photonic processors: architecture and compiler. Nanophotonics 9, 4055–4073 (2020).
Karunaratne, G. et al. In-memory hyperdimensional computing. Nat. Electron. 3, 327–337 (2020).
Karunaratne, G. et al. Robust high-dimensional memory-augmented neural networks. Nat. Commun. 12, 2468 (2021).
Hersche, M., Zeqiri, M., Benini, L., Sebastian, A. & Rahimi, A. A neuro-vector-symbolic architecture for solving Raven’s progressive matrices. Nat. Mach. Intell. 5, 363–375 (2023).
De Marinis, L., Cococcioni, M., Castoldi, P. & Andriolli, N. Photonic neural networks: a survey. IEEE Access 7, 175827–175841 (2019).
Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).
Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).
Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).
Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
Wiebe, N., Braun, D. & Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012).
Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014).
Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014).
Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008).
Cai, X.-D. et al. Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501 (2013).
Aghaee Rad, H. et al. Scaling and networking a modular photonic quantum computer. Nature 638, 912–919 (2025).
Alexander, K. et al. A manufacturable platform for photonic quantum computing. Nature https://doi.org/10.1038/s41586-025-08820-7 (2025).
Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Schuld, M. & Killoran, N. Is quantum advantage the right goal for quantum machine learning? PRX Quantum 3, 030101 (2022).
Bowles, J., Ahmed, S. & Schuld, M. Better than classical? The subtle art of benchmarking quantum machine learning models. Preprint at https://arxiv.org/abs/2403.07059 (2024).
Schütte, N.-E., Götting, N., Müntinga, H., List, M. & Gies, C. Expressive limits of quantum reservoir computing. Preprint at https://arxiv.org/abs/2501.15528 (2025).
Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340 (2016).
Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).
Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. https://doi.org/10.1126/sciadv.abc8268 (2020).
Le Jeannic, H. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).
Nielsen, K. H. et al. Programmable nonlinear quantum photonic circuits. Preprint at https://arxiv.org/abs/2405.17941v1 (2024).
Liu, S. et al. Violation of Bell inequality by photon scattering on a two-level emitter. Nat. Phys. https://doi.org/10.1038/s41567-024-02543-8 (2024).
De Santis, L. et al. A solid-state single-photon filter. Nat. Nanotechnol. 12, 663–667 (2017).
Fujii, K. & Nakajima, K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 8, 024030 (2017).
Spagnolo, M. et al. Experimental photonic quantum memristor. Nat. Photon. 16, 318–323 (2022).
Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).
Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).
Menicucci, N. C. Temporal-mode continuous-variable cluster states using linear optics. Phys. Rev. A 83, 062314 (2011).
Lu, J., Li, M., Zou, C.-L., Al Sayem, A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654–1659 (2020).
Zhao, M. & Fang, K. InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio. Optica 9, 258–263 (2022).
Yanagimoto, R. et al. Engineering a Kerr-based deterministic cubic phase gate via Gaussian operations. Phys. Rev. Lett. 124, 240503 (2020).
Yanagimoto, R. et al. Onset of non-Gaussian quantum physics in pulsed squeezing with mesoscopic fields. Optica 9, 379–390 (2022).
Yanagimoto, R., Nehra, R., Ng, E., Marandi, A. & Mabuchi, H. Engineering cubic quantum nondemolition Hamiltonian with mesoscopic optical parametric interactions. Preprint at https://arxiv.org/abs/2305.03260 (2023).
Yanagimoto, R. et al. Quantum nondemolition measurements with optical parametric amplifiers for ultrafast universal quantum information processing. PRX Quantum 4, 010333 (2023).
Yanagimoto, R. et al. Mesoscopic ultrafast nonlinear optics — the emergence of multimode quantum non-Gaussian physics. Optica 11, 896–918 (2024).
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).
Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).
Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).
Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).
Carosini, L. et al. Programmable multiphoton quantum interference in a single spatial mode. Sci. Adv. 10, eadj0993 (2024).
Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).
Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).
Hazan, A. & Ezra Tsur, E. Neuromorphic analog implementation of neural engineering framework-inspired spiking neuron for high-dimensional representation. Front. Neurosci. 15, 627221 (2021).
Semenova, N., Larger, L. & Brunner, D. Understanding and mitigating noise in trained deep neural networks. Neural Netw. 146, 151–160 (2022).
Tang, G. et al. SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges. Front. Neurosci. 17, 1187252 (2023).
Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6, 041303 (2019).