Li, S., Xu, L. D. & Zhao, S. The internet of things: a survey. Inf. Syst. Front. 17, 243–259 (2015).
Das, S. & Mao, E. The global energy footprint of information and communication technology electronics in connected internet-of-things devices. Sustain. Energy Grids Netw. 24, 100408 (2020).
O’Leary, D. E. Artificial intelligence and big data. IEEE Intell. Syst. 28, 96–99 (2013).
Nahavandi, D., Alizadehsani, R., Khosravi, A. & Acharya, U. R. Application of artificial intelligence in wearable devices: opportunities and challenges. Comput. Methods Prog. Biomed. 213, 106541 (2022).
Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 22501 (2022).
Imran, M. A., Zoha, A., Zhang, L. & Abbasi, Q. H. Grand challenges in IoT and sensor networks. Front. Commun. Netw. 1, 619452 (2020).
Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).
Akarvardar, K. & Wong, H.-S. P. Technology prospects for data-intensive computing. Proc. IEEE 111, 92–112 (2023).
Wan, T. et al. In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, 2203830 (2023).
Chen, C., Zhou, Y., Tong, L., Pang, Y. & Xu, J. Emerging 2D ferroelectric devices for In-sensor and In-memory computing. Adv. Mater. 2400332. https://doi.org/10.1002/adma.202400332 (2024).
Shi, Y., Duong, N. T. & Ang, K.-W. Emerging 2D materials hardware for in-sensor computing. Nanoscale Horiz. 10, 205–229 (2025).
Hassan, J. Z. et al. 2D material-based sensing devices: an update. J. Mater. Chem. A 11, 6016–6063 (2023).
Chen, M. et al. Selective and quasi-continuous switching of ferroelectric Chern insulator devices for neuromorphic computing. Nat. Nanotechnol. 19, 962–969 (2024).
Zhu, K. et al. Hybrid 2D–CMOS microchips for memristive applications. Nature 618, 57–62 (2023).
Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).
Jayachandran, D., Sakib, N. U. & Das, S. 3D integration of 2D electronics. Nat. Rev. Electr. Eng. 1, 300–316 (2024).
An, J. et al. Perspectives of 2D materials for optoelectronic integration. Adv. Funct. Mater. 32, 2110119 (2022).
Li, Z. et al. Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system. Nat. Commun. 15, 7275 (2024).
Zhang, B., Lu, P., Tabrizian, R., Feng, P. X.-L. & Wu, Y. 2D Magnetic heterostructures: spintronics and quantum future. npj Spintron. 2, 6 (2024).
Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).
Shin, Y. et al. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization. Adv. Sci. 9, 2105423 (2022).
Huang, J. et al. A bioinspired MXene-based flexible sensory neuron for tactile near-sensor computing. Nano Energy 126, 109684 (2024).
Subbulakshmi Radhakrishnan, S., Sebastian, A., Oberoi, A., Das, S. & Das, S. A biomimetic neural encoder for spiking neural network. Nat. Commun. 12, 2143 (2021).
Kostarelos, K., Vincent, M., Hebert, C. & Garrido, J. A. Graphene in the design and engineering of next-generation neural interfaces. Adv. Mater. 29, 1700909 (2017).
Faisal, S. N. & Iacopi, F. Thin-film electrodes based on two-dimensional nanomaterials for neural interfaces. ACS Appl. Nano Mater. 5, 10137–10150 (2022).
Yang, Z. et al. Seizure detection using dynamic memristor-based reservoir computing and leaky integrate-and-fire neuron for post-processing. APL Mach. Learn. 1, 046123 (2023).
Farronato, M. et al. Seizure detection via reservoir computing in MoS2-based charge trap memory devices. Sci. Adv. 11, eadr3241 (2025).
Tyagi, D. et al. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12, 3535–3559 (2020).
Kumar Gupta, V., Choudhary, K. & Kumar, S. Two-dimensional materials-based plasmonic sensors for health monitoring systems—a review. IEEE Sens. J. 23, 11324–11335 (2023).
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
Meng, J. et al. Integrated In-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22, 81–89 (2022).
Das, B. et al. Artificial visual systems fabricated with ferroelectric van der waals heterostructure for in-memory computing applications. ACS Nano 17, 21297–21306 (2023).
Wang, P. et al. Integrated In-memory sensor and computing of artificial vision based on full-vdW optoelectronic ferroelectric field-effect transistor. Adv. Sci. 11, 2305679 (2024).
Ci, W. et al. All-In-one optoelectronic neuristor based on full-vdW two-terminal ferroelectric p–n heterojunction. Adv. Funct. Mater. 34, 2305822 (2024).
Liu, K. et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron 5, 761–773 (2022).
Zha, J. et al. Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band. Adv. Mater. 35, 2211598 (2023).
Wu, G. et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22, 1499–1506 (2023).
Zeng, J. et al. Multisensory ferroelectric semiconductor synapse for neuromorphic computing. Adv. Funct. Mater. 34, 2313010 (2024).
Li, X. et al. Multi-functional platform for in-memory computing and sensing based on 2D ferroelectric semiconductor α-In2 Se3. Adv. Funct. Mater. 34, 2306486 (2024).
Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).
Choi, C. et al. Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron 5, 386–393 (2022).
Leblanc, C., Song, S. & Jariwala, D. 2D ferroelectrics and ferroelectrics with 2D: materials and device prospects. Curr. Opin. Solid State Mater. Sci. 32, 101178 (2024).
Wang, H. et al. The evolution of 2D vdW ferroelectric materials: theoretical prediction, experiment confirmation, applications. Appl. Phys. Rev. 11, 21330 (2024).
Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).
Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In 2 Se 3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).
Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 11, 2428 (2020).
Chang, K. et al. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 20, 6590–6597 (2020).
Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).
Du, J. et al. A robust neuromorphic vision sensor with optical control of ferroelectric switching. Nano Energy 89, 106439 (2021).
Sui, F. et al. Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun. 14, 36 (2023).
Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).
Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).
Dutta, D., Mukherjee, S., Uzhansky, M. & Koren, E. Cross-field optoelectronic modulation via inter-coupled ferroelectricity in 2D In2Se3. npj 2D Mater. Appl 5, 81 (2021).
Li, X., Li, S., Tang, B., Liao, J. & Chen, Q. A Vis-SWIR photonic synapse with low power consumption based on WSe2 /In2 Se3 ferroelectric heterostructure. Adv. Electron. Mater. 8, 2200343 (2022).
Zhou, J. et al. Multimodal 2D ferroelectric transistor with integrated perception-and-computing-in-memory functions for reservoir computing. Nano Lett. acs.nanolett.4c05071. https://doi.org/10.1021/acs.nanolett.4c05071 (2024).
Duong, N. T. et al. Coupled ferroelectric-photonic memory in a retinomorphic hardware for In-sensor computing. Adv. Sci. 11, 2303447 (2024).
Wang, X. et al. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021).
Wu, J. et al. High tunnelling electroresistance in a ferroelectric van der waals heterojunction via giant barrier height modulation. Nat. Electron. 3, 466–472 (2020).
Jin, X., Zhang, Y.-Y. & Du, S. Recent progress in the theoretical design of two-dimensional ferroelectric materials. Fundam. Res. 3, 322–331 (2023).
Yu, J. et al. Photoinduced deterministic polarization switching in CuInP2 S6 for multifunctional optoelectronic logic gates. Nano Lett. acs.nanolett.4c05777. https://doi.org/10.1021/acs.nanolett.4c05777 (2025).
Zhang, J. et al. Ultrafast polarization switching via laser-activated ionic migration in ferroelectric CuInP2S6. Phys. Rev. B 111, 104111 (2025).
Guan, Z., Ni, S. & Hu, S. Tunable electronic and optical properties of monolayer and multilayer janus MoSSe as a photocatalyst for solar water splitting: a first-principles study. J. Phys. Chem. C. 122, 6209–6216 (2018).
Yin, W.-J. et al. Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives. Mater. Adv. 2, 7543–7558 (2021).
Tong, L. et al. 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).
Schroeder, U., Park, M. H., Mikolajick, T. & Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 653–669 (2022).
Hsain, H. A. et al. Many routes to ferroelectric HfO2: a review of current deposition methods. J. Vac. Sci. Technol. A 40 (2022).
Xiang, H. et al. Enhancing memory window efficiency of ferroelectric transistor for neuromorphic computing via two-dimensional materials integration. Adv. Funct. Mater. 33, 2304657 (2023).
Chien, Y. et al. A MoS2 hafnium oxide based ferroelectric encoder for temporal-efficient spiking neural network. Adv. Mater. 35, 2204949 (2023).
Wu, X., Gao, S., Xiao, L. & Wang, J. WSe2 negative capacitance field-effect transistor for biosensing applications. ACS Appl. Mater. Interfaces 16, 42597–42607 (2024).
Ning, H. et al. An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18, 493–500 (2023).
Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).
Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).
McCreary, K. M. et al. Stacking-dependent optical properties in bilayer WSe 2. Nanoscale 14, 147–156 (2022).
Yang, T. H. et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nat. Electron. 7, 29–38 (2023).
Yasuda, K. et al. Ultrafast high-endurance memory based on sliding ferroelectrics. Science 385, 53–56 (2024).
Yan, X. et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 624, 551–556 (2023).
Zheng, Z. et al. Electronic ratchet effect in a moiré system: signatures of excitonic ferroelectricity. Preprint at https://doi.org/10.48550/arXiv.2306.03922 (2023).
Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).
Zhai, Y. et al. Reconfigurable 2D-ferroelectric platform for neuromorphic computing. Appl. Phys. Rev. 10, 11408 (2023).
Memristors and Memristive Systems. https://doi.org/10.1007/978-1-4614-9068-5 (Springer New York, 2014).
Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
Shan, X. et al. Emerging multimodal memristors for biorealistic neuromorphic applications. Mater. Futures 3, 12701 (2024).
Thakkar, P., Gosai, J., Gogoi, H. J. & Solanki, A. From fundamentals to frontiers: a review of memristor mechanisms, modeling and emerging applications. J. Mater. Chem. C. 12, 1583–1608 (2024).
Zhao, T. et al. Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3 C2 T x MXenes floating gate. Adv. Funct. Mater. 31, 2106000 (2021).
Wang, Y. et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv. Funct. Mater. 31, 2100144 (2021).
Ahmed, T. et al. Optically stimulated artificial synapse based on layered black phosphorus. Small 15, 1900966 (2019).
He, H. et al. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 14, 1800079 (2018).
Cheng, Y. et al. Vertical 0D-perovskite/2D-MoS2 van der waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small 16, 2005217 (2020).
Wang, W. et al. Artificial optoelectronic synapses based on TiN x O2– x /MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 31, 2101201 (2021).
Sahu, M. C., Sahoo, S., Mallik, S. K., Jena, A. K. & Sahoo, S. Multifunctional 2D MoS2 optoelectronic artificial synapse with integrated arithmetic and reconfigurable logic operations for In-memory neuromorphic computing applications. Adv. Mater. Technol. 8, 2201125 (2023).
Dodda, A., Trainor, N., Redwing, Joan, M. & Das, S. All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022).
Li, G. et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 13, 1729 (2022).
Zha, J. et al. A 2D heterostructure-based multifunctional floating gate memory device for multimodal reservoir computing. Adv. Mater. 36, 2308502 (2024).
Sun, L. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).
Chen, J. et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18, 882–888 (2023).
Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).
Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).
Song, M.-K. et al. Recent advances and future prospects for memristive materials, devices, and systems. ACS Nano 17, 11994–12039 (2023).
Jang, H. et al. Flexible neuromorphic electronics for wearable near-sensor and In-sensor computing systems. Adv. Mater. 37, 2416073 (2025).
Van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).
Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).
Hirata, T. & Ohuchi, F. S. Temperature dependence of the Raman spectra of 1T-TaS2. Solid State Commun. 117, 361–364 (2001).
Samnakay, R. et al. Zone-folded phonons and the commensurate−incommensurate charge-density-wave transition in 1T‑TaSe2 thin films. Nano Lett. 15, 2965–2973 (2015).
Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).
Sayers, C. J. et al. Correlation between crystal purity and the charge density wave in 1 T – VSe 2. Phys. Rev. Mater. 4, 25002 (2020).
Hossain, M. et al. Recent advances in two-dimensional materials with charge density waves: synthesis, characterization and applications. Crystals 7, 298 (2017).
Vaskivskyi, I. et al. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 7, 11442 (2016).
Khitun, A., Liu, G. & Balandin, A. A. Two-dimensional oscillatory neural network based on room-temperature charge-density-wave devices. IEEE Trans. Nanotechnol. 16, 860–867 (2017).
Mihailovic, D. et al. Ultrafast non-thermal and thermal switching in charge configuration memory devices based on 1T-TaS2. Appl. Phys. Lett. 119, 13106 (2021).
Liu, H. et al. A tantalum disulfide charge-density-wave stochastic artificial neuron for emulating neural statistical properties. Nano Lett. 21, 3465–3472 (2021).
Li, W. & Naik, G. V. Light-induced reorganization of charge density wave stacking in 1T-TaS2. Appl. Phys. Lett. 118, 253104 (2021).
Behera, S. K., Ahalawat, M. & Ramamurthy, P. C. Reconstructed electronic structure in 2D vdW 1T-Ta$S_2$ for quantum sensing and information science. Preprint at https://doi.org/10.48550/arXiv.2404.14932 (2024).
Huang, W. C.-W. et al. Ultrafast optical switching to a heterochiral charge-density wave state. Preprint at https://doi.org/10.48550/arXiv.2405.20872 (2024).
Tilak, N. et al. Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure. Nat. Commun. 15, 8056 (2024).
Brown, J. O., Guo, T., Pasqualetti, F. & Balandin, A. A. Charge-density-wave oscillator networks for solving combinatorial optimization problems. Preprint at https://doi.org/10.48550/arXiv.2503.06355 (2025).
Lv, B. Q. et al. Unconventional hysteretic transition in a charge density wave. Phys. Rev. Lett. 128, 36401 (2022).
Wu, D. et al. Layered semiconductor EuTe 4 with charge density wave order in square tellurium sheets. Phys. Rev. Mater. 3, 24002 (2019).
Zhang, Q. Q. et al. Thermal hysteretic behavior and negative magnetoresistance in the charge density wave material EuTe 4. Phys. Rev. B 107, 115141 (2023).
Rathore, R. et al. Evolution of static charge density wave order, amplitude mode dynamics, and suppression of kohn anomalies at the hysteretic transition in EuTe 4. Phys. Rev. B 107, 24101 (2023).
Liu, Q. et al. Room-temperature non-volatile optical manipulation of polar order in a charge density wave. Nat. Commun. 15, 8937 (2024).
Verma, A. et al. Picosecond volume expansion drives a later-time insulator–metal transition in a nano-textured mott insulator. Nat. Phys. 20, 807–814 (2024).
Venturini, R. et al. Electrically driven non-volatile resistance switching between charge density wave states at room temperature. Preprint at https://doi.org/10.48550/arXiv.2412.13094 (2024).
Duan, S. et al. Identification of metastable lattice distortion free charge density wave at photoinduced interface via TRARPES. npj Quantum Mater. 10, 16 (2025).
de la Torre, A. et al. Dynamic phase transition into a mixed-CDW state in 1$T$-TaS$_2$ via a thermal quench. Preprint at https://doi.org/10.48550/arXiv.2407.07953 (2025).
Boix-Constant, C. et al. Out-of-plane transport of 1T-TaS2 /graphene-based van der waals heterostructures. ACS Nano 15, 11898–11907 (2021).
Taheri, M. et al. Electrical gating of the charge-density-wave phases in two-dimensional h -BN/1T-TaS2 devices. ACS Nano 16, 18968–18977 (2022).
Shi, J. et al. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater. 30, 1804616 (2018).
Yanase, T. et al. Unidirectional growth of epitaxial tantalum disulfide triangle crystals grown on sapphire by chemical vapour deposition with a separate-flow system. CrystEngComm 26, 341–348 (2024).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
Du, R. et al. Two-dimensional multiferroic material of metallic p-doped SnSe. Nat. Commun. 13, 6130 (2022).
Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der waals substrates. Nat. Nanotech. 13, 289–293 (2018).
Zhang, G. et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun. 13, 5067 (2022).
Shao, D.-F. & Tsymbal, E. Y. Antiferromagnetic tunnel junctions for spintronics. npj Spintron. 2, 13 (2024).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).
Wang, X. et al. Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6. Nat. Commun. 14, 840 (2023).
Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).
Sattar, S., Islam, M. F. & Canali, C. M. Monolayer Mn X. and Janus, X Mn Y (X, Y= S, Se, Te): a family of two-dimensional antiferromagnetic semiconductors. Phys. Rev. B 106, 085410 (2022).
Moinuddin, M. G., Srinivasan, S. & Sharma, S. K. Probing ferrimagnetic semiconductor with enhanced negative magnetoresistance: 2D chromium sulfide. Adv. Electron. Mater. 7, 2001116 (2021).
Girovsky, J. et al. Long-range ferrimagnetic order in a two-dimensional supramolecular kondo lattice. Nat. Commun. 8, 15388 (2017).
Li, X. & Yang, J. Toward room-temperature magnetic semiconductors in two-dimensional ferrimagnetic organometallic lattices. J. Phys. Chem. Lett. 10, 2439–2444 (2019).
Fender, S. S., Gonzalez, O. & Bediako, D. K. Altermagnetism: a chemical perspective. J. Am. Chem. Soc. 147, 2257–2274 (2025).
Song, C. et al. Altermagnets as a new class of functional materials. Nat. Rev. Mater. https://doi.org/10.1038/s41578-025-00779-1 (2025).
Reichlova, H. et al. Observation of a spontaneous anomalous hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun. 15, 4961 (2024).
Regmi, R.B., Bhandari, H. & Thapa, B. Altermagnetism in the layered intercalated transition metal dichalcogenide CoNb4Se8. Nat Commun 16, 4399 (2025).
Lawrence, E. A. et al. Fe site order and magnetic properties of Fe1/4 NbS2. Inorg. Chem. 62, 18179–18188 (2023).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Bera, S. & Mandal, S. S. Theory of the skyrmion, meron, antiskyrmion, and antimeron in chiral magnets. Phys. Rev. Res. 1, 033109 (2019).
Tey, M. S. N., Chen, X., Soumyanarayanan, A. & Ho, P. Chiral spin textures for next-generation memory and unconventional computing. ACS Appl. Electron. Mater. 4, 5088–5097 (2022).
Crépieux, A. & Lacroix, C. Dzyaloshinsky–moriya interactions induced by symmetry breaking at a surface. J. Magn. Magn. Mater. 182, 341–349 (1998).
Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).
Behera, A. K., Chowdhury, S. & Das, S. R. Magnetic skyrmions in atomic thin CrI3 monolayer. Appl. Phys. Lett. 114, 232402 (2019).
Zhang, Y. et al. Generation of magnetic skyrmions in two-dimensional magnets via interfacial proximity. Phys. Rev. B 107, 24402 (2023).
Hallal, A. et al. Rashba-type dzyaloshinskii–moriya interaction, perpendicular magnetic anisotropy, and skyrmion states at 2D materials/Co interfaces. Nano Lett. 21, 7138–7144 (2021).
Sun, W. et al. Manipulation of magnetic skyrmion in a 2D van der Waals heterostructure via both electric and magnetic fields. Adv. Funct. Mater. 31, 2104452 (2021).
Cui, Q. et al. Anisotropic Dzyaloshinskii–Moriya interaction and topological magnetism in two-dimensional magnets protected by P 4̅ m 2 crystal symmetry. Nano Lett. 22, 2334–2341 (2022).
Bennett, D., Chaudhary, G., Slager, R.-J., Bousquet, E. & Ghosez, P. Polar meron-antimeron networks in strained and twisted bilayers. Nat. Commun. 14, 1629 (2023).
Xia, J., Zhang, X., Liu, X., Zhou, Y. & Ezawa, M. Qubits based on merons in magnetic nanodisks. Commun. Mater. 3, 88 (2022).
Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).
Ahn, E. C. 2D materials for spintronic devices. npj 2D Mater. Appl 4, 17 (2020).
Ikeda, S. et al. Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans. Electron Devices 54, 991–1002 (2007).
Kumar, M. et al. Progress in multiferroic and magnetoelectric materials: applications, opportunities and challenges. J. Mater. Sci. Mater. Electron. 31, 19487–19510 (2020).
Tabrizchi, S. et al. Magnetic-based integrated sensing and In/near-sensor processing:a comprehensive survey and future outlook. Preprint at https://doi.org/10.21203/rs.3.rs-4909455/v1 (2024).
Yang, H. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022).
Kaverzin, A. A., Ghiasi, T. S., Dismukes, A. H., Roy, X. & van Wees, B. J. Towards fully two-dimensional spintronic devices. 2D Mater. 9, 045003 (2022).
Piquemal-Banci, M. et al. 2D-MTJs: introducing 2D materials in magnetic tunnel junctions. J. Phys. D Appl. Phys. 50, 203002 (2017).
Wang, Z. et al. Tunneling spin valves based on Fe3 GeTe2 /hBN/Fe3 GeTe2 van der waals heterostructures. Nano Lett. 18, 4303–4308 (2018).
Camsari, K. Y., Sutton, B. M. & Datta, S. p-bits for probabilistic spin logic. Appl. Phys. Rev. 6, 11305 (2019).
Daniel, J. et al. Experimental demonstration of an on-chip p-bit core based on stochastic magnetic tunnel junctions and 2D MoS2 transistors. Nat. Commun. 15, 4098 (2024).
Löhndorf, M. et al. Highly sensitive strain sensors based on magnetic tunneling junctions. Appl. Phys. Lett. 81, 313–315 (2002).
Ota, S., Ando, A. & Chiba, D. A flexible giant magnetoresistive device for sensing strain direction. Nat. Electron. 1, 124–129 (2018).
Liang, S. et al. Small-voltage multiferroic control of two-dimensional magnetic insulators. Nat. Electron. 6, 199–205 (2023).
Behera, B., Sutar, B. C. & Pradhan, N. R. Recent progress on 2D ferroelectric and multiferroic materials, challenges, and opportunity. Emergent Mater. 4, 847–863 (2021).
Guo, Y. et al. 2D multiferroicity with ferroelectric switching induced spin-constrained photoelectricity. ACS Nano 16, 11174–11181 (2022).
Krempaský, J. et al. Efficient magnetic switching in a correlated spin glass. Nat. Commun. 14, 6127 (2023).
Shao, D.-F., Zhang, S.-H., Li, M., Eom, C.-B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).
Dong, J. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).
Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).
Zhang, X. et al. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, 7643 (2015).
Koraltan, S. et al. Skyrmionic device for three dimensional magnetic field sensing enabled by spin-orbit torques. Preprint at https://doi.org/10.48550/arXiv.2403.16725 (2024).
Yokouchi, T. et al. Pattern recognition with neuromorphic computing using magnetic field–induced dynamics of skyrmions. Sci. Adv. 8, eabq5652 (2022).
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der waals crystals. Nature 546, 265–269 (2017).
Ansari, M. S., Othman, M. H. D., Ansari, M. O., Ansari, S. & Abdullah, H. Progress in Fe3O4-centered spintronic systems: development, architecture, and features. Appl. Mater. Today 25, 101181 (2021).
Plummer, D. Z. et al. 2D Spintronics for neuromorphic computing with scalability and energy efficiency. J. Low Power Electron. Appl. 15, 16 (2025).
Wang, H. et al. Above room-temperature ferromagnetism in wafer-scale two-dimensional van der waals Fe3 GeTe2 tailored by a topological insulator. ACS Nano 14, 10045–10053 (2020).
Dankert, A., Venkata Kamalakar, M., Wajid, A., Patel, R. S. & Dash, S. P. Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers. Nano Res 8, 1357–1364 (2015).
Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).
Kumari, S., Pradhan, D. K., Pradhan, N. R. & Rack, P. D. Recent developments on 2D magnetic materials: challenges and opportunities. Emergent Mater. 4, 827–846 (2021).
Hao, Q. et al. 2D magnetic heterostructures and emergent spintronic devices. Adv. Elect. Mater. 8, 2200164 (2022).
Leitao, D. C. et al. Enhanced performance and functionality in spintronic sensors. Npj Spintron. 2, 54 (2024).
Zhao, Z., Lin, Y. & Avsar, A. Novel spintronic effects in two-dimensional van der Waals heterostructures. npj 2D Mater. Appl. 9, 30 (2025).
Cui, Z. et al. Magnetic-ferroelectric synergic control of multilevel conducting states in van der waals multiferroic tunnel junctions towards in-memory computing. Nanoscale 16, 1331–1344 (2024).
Piquemal-Banci, M. et al. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Appl. Phys. Lett. 108, 102404 (2016).
Jayachandran, D. et al. Three-dimensional integration of two-dimensional field-effect transistors. Nature 625, 276–281 (2024).
Schram, T. et al. WS2 transistors on 300 mm wafers with BEOL compatibility. In Proc. 47th European Solid-state Device Research Conference (essderc) 212–215. https://doi.org/10.1109/ESSDERC.2017.8066629 (IEEE, Leuven, Belgium, 2017).
Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).
Zhou, Z. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 621, 499–505 (2023).
Schranghamer, T. F., Sharma, M., Singh, R. & Das, S. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem. Soc. Rev. 50, 11032–11054 (2021).
Nakatani, M. et al. Ready-to-transfer two-dimensional materials using tunable adhesive force tapes. Nat. Electron. 7, 119–130 (2024).
Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
Aubin, C. A. et al. Towards enduring autonomous robots via embodied energy. Nature 602, 393–402 (2022).
Rodgers, M. M., Pai, V. M. & Conroy, R. S. Recent advances in wearable sensors for health monitoring. IEEE Sens. J. 15, 3119–3126 (2015).
Wang, T.-Y. et al. Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021).
Feng, G. et al. Flexible vertical photogating transistor network with an ultrashort channel for In-sensor visual nociceptor. Adv. Funct. Mater. 31, 2104327 (2021).
Ji, R. et al. Fully light-modulated organic artificial synapse with the assistance of ferroelectric polarization. Adv. Electron. Mater. 8, 2101402 (2022).
Haldane, F. D. M. Nobel lecture: topological quantum matter. Rev. Mod. Phys. 89, 40502 (2017).
Kou, X., Fan, Y., Lang, M., Upadhyaya, P. & Wang, K. L. Magnetic topological insulators and quantum anomalous hall effect. Solid State Commun. 215–216, 34–53 (2015).
Liu, Y. et al. Cryogenic in-memory computing using magnetic topological insulators. Nat. Mater. https://doi.org/10.1038/s41563-024-02088-4 (2025).
Zhu, T., Wang, H., Zhang, H. & Xing, D. Tunable dynamical magnetoelectric effect in antiferromagnetic topological insulator MnBi2Te4 films. npj Comput. Mater. 7, 121 (2021).
Weber, B. et al. 2024 roadmap on 2D topological insulators. J. Phys. Mater. 7, 22501 (2024).
Cucchi, I. et al. Microfocus laser–angle-resolved photoemission on encapsulated mono-, Bi-, and few-layer 1T′-WTe2. Nano Lett. 19, 554–560 (2019).
Xu, N., Xu, Y. & Zhu, J. Topological insulators for thermoelectrics. npj Quantum Mater. 2, 51 (2017).
Wen, W., Dang, C. & Xie, L. Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2 *. Chin. Phys. B 28, 58504 (2019).
Freitas, P. P., Ferreira, R. & Cardoso, S. Spintronic sensors. Proc. IEEE 104, 1894–1918 (2016).