Foyer CH, Nguyen H, Lam HM. Legumes—the art and science of environmentally sustainable agriculture. Plant Cell Environ. 2019;42(1):1–5.

PubMed 

Google Scholar
 

Hemler EC, Hu FB. Plant-Based diets for personal, population, and planetary health. Adv Nutr. 2019;10(Supplement4):S275–83.

PubMed 
PubMed Central 

Google Scholar
 

FAOSTAT. 2023. Available from: https://www.fao.org/faostat/en/#data/QCL. [cited 2023 Jun 30].

Jensen ES. Seasonal patterns of growth and nitrogen fixation in field-grown pea. Plant Soil. 1987;101(1):29–37.


Google Scholar
 

Borisov AY, Danilova TN, Koroleva TA, Kuznetsova EV, Madsen L, Mofett M, et al. Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects. Appl Biochem Microbiol. 2007;43(3):237–43.


Google Scholar
 

Jha AB, Gali KK, Alam Z, Lachagari VBR, Warkentin TD, Jha AB, et al. Potential application of genomic technologies in breeding for fungal and oomycete disease resistance in pea. Agron 2021. 2021;11(6):1260.


Google Scholar
 

Wille L, Messmer MM, Bodenhausen N, Studer B, Hohmann P. Heritable variation in pea for resistance against a root rot complex and its characterization by amplicon sequencing. Front Plant Sci. 2020;11. Available from: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.542153.

Xue AG. Biological control of pathogens causing root rot complex in field pea using Clonostachys rosea strain ACM941. Phytopathology. 2003;93(3):329–35.

PubMed 

Google Scholar
 

Bani M, Rubiales D, Rispail N. A detailed evaluation method to identify sources of quantitative resistance to fusarium oxysporum f. sp. pisi race 2 within a pisum sp.. germplasm collection. Plant Pathol. 2012;61(3):532–42.


Google Scholar
 

Kraft JM, Pfleger FL. Compendium of pea diseases and pests. 2001. Available from: https://blackwells.co.uk/bookshop/product/Compendium-of-Pea-Diseases-and-Pests-by-John-M-Kraft-Francis-Louis-Pfleger-American-Phytopathological-Society/9780890542699. [cited 2025 Apr 17].

Wille L, Messmer MM, Studer B, Hohmann P. Insights to plant–microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant Cell Environ. 2019;42(1):20–40.

PubMed 

Google Scholar
 

Sivachandra Kumar NT, Cox,Laura A-C, Cheryl, and, Banniza S. Optimization of zoospore production and inoculum concentration of Aphanomyces euteiches for resistance screening of pea and lentil. Can J Plant Pathol. 2020;42(3):419–28.

Mathew FM, Lamppa RS, Chittem K, Chang YW, Botschner M, Kinzer K, et al. Characterization and pathogenicity of Rhizoctonia solani isolates affecting Pisum sativum in North Dakota. Plant Dis. 2012;96(5):666–72.

PubMed 

Google Scholar
 

Williamson-Benavides BA, Dhingra A. Understanding root rot disease in agricultural crops. Horticulturae. 2021;7(2):33.


Google Scholar
 

Wohor OZ, Rispail N, Ojiewo CO, Rubiales D. Pea breeding for resistance to rhizospheric pathogens. Plants. 2022;11(19):2664.

PubMed 
PubMed Central 

Google Scholar
 

Sharma A, Rani M, Lata H, Thakur A, Sharma P, Kumar P, et al. Global dimension of root rot complex in garden pea: current status and breeding prospective. Crop Prot. 2022;158:106004.


Google Scholar
 

Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJV, Castillejo MA, et al. Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci. 2015;34(1–3):195–236.


Google Scholar
 

Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6(1):58.

PubMed 
PubMed Central 

Google Scholar
 

Delaux PM, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science. 2021;371(6531):eaba6605.

PubMed 

Google Scholar
 

Van den Koornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206(4):1196–206.


Google Scholar
 

Deng S, Caddell DF, Xu G, Dahlen L, Washington L, Yang J, et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 2021;15(11):3181–94.

PubMed 
PubMed Central 

Google Scholar
 

Escudero-Martinez C, Coulter M, Alegria Terrazas R, Foito A, Kapadia R, Pietrangelo L, et al. Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nat Commun 2022 131. 2022;13(1):1–14.


Google Scholar
 

Mendes LW, Mendes R, Raaijmakers JM, Tsai SM. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 2018;12(12):3038.

PubMed 
PubMed Central 

Google Scholar
 

Gfeller V, Schneider M, Bodenhausen N, et al. Crop genotype modulates root rot resistance-associated microbial community composition and abundance of key taxa. Environ Microbiome. 2025;20:89. https://doi.org/10.1186/s40793-025-00755-w

Ariza-Suarez D, Wille L, Hohmann P, Gfeller V, Schneider M, Horton M et al. Association genetics and genomic prediction for resistance to root rot in a diverse collection of Pisum sativum L. 2024. Available from: https://www.authorea.com/users/825782/articles/1221265-association-genetics-and-genomic-prediction-for-resistance-to-root-rot-in-a-diverse-collection-of-pisum-sativum-l?commit=5d2727db7e24a8c1f9f187a96edce09084285309. [cited 2025 Jan 30].

Yang T, Liu R, Luo Y, Hu S, Wang D, Wang C, et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet. 2022;54(10):1553–63.

PubMed 
PubMed Central 

Google Scholar
 

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.

PubMed 
PubMed Central 

Google Scholar
 

Tello D, Gil J, Loaiza CD, Riascos JJ, Cardozo N, Duitama J. NGSEP3: accurate variant calling across species and sequencing protocols. Bioinformatics. 2019;35(22):4716–23.

PubMed 
PubMed Central 

Google Scholar
 

Browning BL, Tian X, Zhou Y, Browning SR. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet. 2021;108(10):1880–90.

PubMed 
PubMed Central 

Google Scholar
 

Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016. p. 081257. Available from: https://www.biorxiv.org/content/10.1101/081257v1. [cited 2025 Jan 31].

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.

PubMed 

Google Scholar
 

Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47(D1):D259–64.

PubMed 

Google Scholar
 

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7.

PubMed 
PubMed Central 

Google Scholar
 

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13(7):581–3.

PubMed 
PubMed Central 

Google Scholar
 

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.

PubMed 
PubMed Central 

Google Scholar
 

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–596.

PubMed 

Google Scholar
 

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421.

PubMed 
PubMed Central 

Google Scholar
 

Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the National center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20–6.

PubMed 

Google Scholar
 

Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.

PubMed 
PubMed Central 

Google Scholar
 

Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27(2):209–20.

PubMed 

Google Scholar
 

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR et al. vegan: community ecology package. 2025. Available from: https://cran.r-project.org/web/packages/vegan/index.html. [cited 2025 Jun 18].

Endelman J. rrBLUP: ridge regression and other kernels for genomic selection. 2023. Available from: https://cran.r-project.org/web/packages/rrBLUP/index.html. [cited 2025 Apr 17].

Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun. 2014;5(1): 5320.

PubMed 

Google Scholar
 

Pérez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics. 2014;198(2):483–95.

PubMed 
PubMed Central 

Google Scholar
 

Chatterton S, Schwinghamer TD, Pagé A, Davidson RB, Harding MW, Banniza S. Inoculum dose–disease response relationships for the pea root rot pathogen, Aphanomyces euteiches, are dependent on soil type and other pathogens. Front Plant Sci. 2023;14. Available from: https://www.frontiersin.orghttps://www.frontiersin.org. [cited 2025 Apr 17].

Persson L, Larsson-Wikström M, Gerhardson B. Assessment of soil suppressiveness to aphanomyces root rot of pea. Plant Dis. 1999;83(12):1108–12.

PubMed 

Google Scholar
 

Porter LD, Kraft JM, Grünwald NJ. Release of pea germplasm with fusarium resistance combined with desirable yield and Anti-Lodging traits. J Plant Regist. 2014;8(2):191–4.


Google Scholar
 

Nazir N, Badri ZA, Bhat NA, Bhat FA, Sultan P, Bhat TA, et al. Effect of the combination of biological, chemical control and agronomic technique in integrated management pea root rot and its productivity. Sci Rep. 2022;12(1):11348.

PubMed 
PubMed Central 

Google Scholar
 

Singh G, Wright D. In vitro studies on the effects of herbicides on the growth of rhizobia. Lett Appl Microbiol. 2002;35(1):12–6.

PubMed 

Google Scholar
 

Galindo Flores H, Martínez Álvarez JC, Nava Pérez E, García Estrada RS, Maldonado Mendoza IE. A saprotrophic fungal isolate from Northern Sinaloa, Mexico, with homology to members of the chaetomiaceae behaves as an antagonist of phytopathogenic fungi in vitro. 2005. Available from: http://www.repositoriodigital.ipn.mx//handle/123456789/8591. [cited 2024 Apr 22].

Abo-Elyousr KAM, Ibrahim OHM, Al-Qurashi AD, Mousa MAA, Saad MM. Biocontrol potential of endophytic fungi for the Eco-Friendly management of root rot of cuminum cyminum caused by fusarium Solani. Agron 2022. 2022;12(11):2612. 12 Page 2612.


Google Scholar
 

Phong NH, Pongnak W, Soytong K. Antifungal activities of Chaetomium spp. against fusarium wilt of tea. Plant Prot Sci. 2016;52(1):10–7.


Google Scholar
 

Kerr A. The root rot-fusarium wilt complex of peas. Aust J Biol Sci. 1963;16(1):55–69.


Google Scholar
 

Coyne CJ, Porter LD, Boutet G, Ma Y, McGee RJ, Lesné A, et al. Confirmation of fusarium root rot resistance QTL Fsp-Ps 2.1 of pea under controlled conditions. BMC Plant Biol. 2019;19(1):1–8.


Google Scholar
 

Bodah ET, Porter LD, Chaves B, Dhingra A. Evaluation of pea accessions and commercial cultivars for fusarium root rot resistance. Euphytica. 2016;208(1):63–72.


Google Scholar
 

Kraft JM, Boge W. Root characteristics in pea in relation to compaction and fusarium root rot. Plant Dis. 2001;85(9):936–40.

PubMed 

Google Scholar
 

Tu JC. Effects of soil compaction, temperature, and moisture on the development of the fusarium root rot complex of pea in southwestern Ontario. Phytoprotection. 1994;75(3):125–31.


Google Scholar
 

Auger J, Pérez I, Esterio M. Occurrence of root rot disease of Cherimoya (Annona cherimola Mill.) caused by dactylonectria macrodidyma in Chile. Plant Dis. 2015;99(9):1282–1282.


Google Scholar
 

Manici LM, Caboni E, Caputo F, Frattarelli A, Lucioli S. Phytotoxins from Dactylonectria torresensis involved in replant disease of fruit trees. Rhizosphere. 2021;17:100300.


Google Scholar
 

Nigro F, Antelmi I, Sion V, Parente P, Pacifico A. First report of dactylonectria torresensis causing foot and root rot of olive trees. Plant Dis. 2019;103(4):768–768.


Google Scholar
 

Weber RWS, Entrop AP. Dactylonectria torresensis as the main component of the black root rot complex of strawberries and raspberries in Northern Germany. Erwerbs-Obstbau. 2017;59(3):157–69.


Google Scholar
 

Sampaio AM, Alves ML, Pereira P, Valiollahi E, Santos C, Šatović Z, et al. Grass pea natural variation reveals oligogenic resistance to fusarium oxysporum f. Sp. pisi. Plant Genome. 2021;14(3):e20154.

PubMed 

Google Scholar
 

Feng J, Hwang R, Chang KF, Conner RL, Hwang SF, Strelkov SE, et al. Identification of microsatellite markers linked to quantitative trait loci controlling resistance to fusarium root rot in field pea. Can J Plant Sci. 2011;91(1):199–204.


Google Scholar
 

Debbarma R, Kamil D, Maya Bashyal B, Choudhary SP, Thokla P. First report of root rot disease on solanum lycopersicum L. caused by fusarium Vanettenii in India. J Phytopathol. 2021;169(11–12):752–6.


Google Scholar
 

Alavi P, Starcher MR, Zachow C, Müller H, Berg G. Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci. 2013;4:51567.

Egamberdieva D, Jabborova D, Berg G. Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil. 2016;405(1–2):35–45.


Google Scholar
 

Schmidt CS, Alavi M, Cardinale M, Müller H, Berg G. Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils. 2012;48(8):947–60.


Google Scholar
 

Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12(6):1496–507.

PubMed 
PubMed Central 

Google Scholar
 

Kshetri L, Naseem F, Pandey P. Role of Serratia sp. as biocontrol agent and plant growth stimulator, with prospects of biotic stress management in plant. In: Sayyed RZ, editor. Plant growth promoting rhizobacteria for sustainable stress management: Volume 2: Rhizobacteria in Biotic Stress Management. Singapore: Springer; 2019. pp. 169–200. Available from: https://doi.org/10.1007/978-981-13-6986-5_6. [cited 2025 Apr 17].

Wille L, Kurmann M, Messmer MM, Studer B, Hohmann P. Untangling the pea root rot complex reveals microbial markers for plant health. Front Plant Sci. 2021;12. Available from: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.737820.

PulseDB. 2025. Available from: https://www.pulsedb.org/. [cited 2025 Apr 17].

Wu L, Fredua-Agyeman R, Hwang SF, Chang KF, Conner RL, McLaren DL, et al. Mapping QTL associated with partial resistance to aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers. Theor Appl Genet. 2021;134(9):2965–90.

PubMed 

Google Scholar
 

Gali KK, Sackville A, Tafesse EG, Lachagari VBR, McPhee K, Hybl M, et al. Genome-wide association mapping for agronomic and seed quality traits of field pea (Pisum sativum L.). Front Plant Sci. 2019;10. Available from: https://www.frontiersin.org; https://www.frontiersin.org. [cited 2025 Apr 17].

Tafesse EG, Gali KK, Lachagari VBR, Bueckert R, Warkentin TD. Genome-wide association mapping for heat and drought adaptive traits in pea. Genes. 2021;12(12):1897.

PubMed 
PubMed Central 

Google Scholar
 

Wang Y, Wang X, Sun S, Jin C, Su J, Wei J, et al. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in Foxtail millet. Nat Commun 2022 131. 2022;13(1):1–17.


Google Scholar
 

Oyserman BO, Flores SS, Griffioen T, Pan X, van der Wijk E, Pronk L, et al. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nat Commun. 2022;13(1):3228.

PubMed 
PubMed Central 

Google Scholar
 

Carpenter MA, Goulden DS, Woods CJ, Thomson SJ, Kenel F, Frew TJ, et al. Genomic selection for ascochyta blight resistance in pea. Front Plant Sci. 2018;9. Available from: https://www.frontiersin.org; https://www.frontiersin.org. [cited 2025 Apr 17].

Burstin J, Salloignon P, Chabert-Martinello M, Magnin-Robert JB, Siol M, Jacquin F, et al. Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics. 2015;16(1):105.

PubMed 
PubMed Central 

Google Scholar
 

Bari MAA, Zheng P, Viera I, Worral H, Szwiec S, Ma Y, et al. Harnessing genetic diversity in the USDA pea germplasm collection through genomic prediction. Front Genet. 2021;12. Available from: https://www.frontiersin.org; https://www.frontiersin.org. [cited 2025 Apr 17].

Gu Y, Banerjee S, Dini-Andreote F, Xu Y, Shen Q, Jousset A, et al. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. ISME J. 2022;16(10):2448–56.

PubMed 
PubMed Central 

Google Scholar
 

Jeong S, Kim JY, Kim N, GMStool. GWAS-based marker selection tool for genomic prediction from genomic data. Sci Rep. 2020;10(1):19653.

PubMed 
PubMed Central 

Google Scholar
 

Desgroux A, L’Anthoëne V, Roux-Duparque M, Rivière JP, Aubert G, Tayeh N, et al. Genome-wide association mapping of partial resistance to aphanomyces euteiches in pea. BMC Genomics. 2016;17(1):124.

PubMed 
PubMed Central 

Google Scholar