Mills, I. M., Mohr, P. J., Quinn, T. J., Taylor, B. N. & Williams, E. R. Redefinition of the kilogram: a decision whose time has come. Metrologia 42, 71–80 (2005).
Milton, M. J., Davis, R. & Fletcher, N. Towards a new SI: a review of progress made since 2011. Metrologia 51, R21 (2014).
Davis, R. An introduction to the revised international system of units (si). IEEE Instrum. Meas. Mag. 22, 4–8 (2019).
Poirier, W., Djordjevic, S., Schopfer, F. & Thévenot, O. The ampere and the electrical units in the quantum era. C. R. Phys. 20, 92–128 (2019).
Taylor, B. & Witt, T. New international electrical reference standards based on the Josephson and quantum Hall effects. Metrologia 26, 47–62 (1989).
Jeckelmann, B. & Jeanneret, B. The quantum Hall effect as an electrical resistance standard. Rep. Prog. Phys. 64, 1603–1655 (2001).
Tzalenchuk, A. et al. Towards a quantum resistance standard based on epitaxial graphene. Nat. Nanotechnol. 5, 186–189 (2010).
Schopfer, F. & Poirier, W. Quantum resistance standard accuracy close to the zero-dissipation state. J. Appl. Phys. 114, 064508 (2013).
Ribeiro-Palau, R. et al. Quantum hall resistance standard in graphene devices under relaxed experimental conditions. Nat. Nanotechnol. 10, 965–971 (2015).
Rigosi, A. F. & Elmquist, R. E. The quantum Hall effect in the era of the new SI. Semicond. Sci. Technol. 34, 093004 (2019).
Bloch, F. Josephson effect in a superconducting ring. Phys. Rev. B 2, 109–121 (1970).
Fulton, T. A. Implications of solid-state corrections to the Josephson voltage-frequency relation. Phys. Rev. B 7, 981–982 (1973).
Clothier, W., Sloggett, G., Bairnsfather, H., Currey, M. & Benjamin, D. A determination of the volt. Metrologia 26, 9–46 (1989).
Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys. 93, 025010 (2021).
Keller, M. W. Current status of the quantum metrology triangle. Metrologia 45, 102–109 (2008).
Scherer, H. & Camarota, B. Quantum metrology triangle experiments: a status review. Meas. Sci. Technol. 23, 124010 (2012).
Hohls, F. et al. Semiconductor quantized voltage source. Phys. Rev. Lett. 109, 056802 (2012).
Brun-Picard, J., Djordjevic, S., Leprat, D., Schopfer, F. & Poirier, W. Practical quantum realization of the ampere from the elementary charge. Phys. Rev. X 6, 041051 (2016).
Djordjevic, S., Behr, R. & Poirier, W. A primary quantum current standard based on the Josephson and the quantum Hall effects. Nat. Commun. 16, 1447 (2025).
Sullivan, D. & Dziuba, R. F. Low temperature direct current comparators. Rev. Sci. Instrum. 45, 517–519 (1974).
Williams, J. Cryogenic current comparators and their application to electrical metrology. IET Sci. Meas. Technol. 5, 211–224 (2011).
Chae, D.-H., Kim, M.-S., Kim, W.-S., Oe, T. & Kaneko, N.-H. Quantum mechanical current-to-voltage conversion with quantum Hall resistance array. Metrologia 57, 025004 (2020).
Chae, D.-H., Kim, M.-S., Oe, T. & Kaneko, N.-H. Series connection of quantum Hall resistance array and programmable Josephson voltage standard for current generation at one microampere. Metrologia 59, 065011 (2022).
Chen, Y. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).
Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).
Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012).
Fox, E. J. et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 98, 075145 (2018).
Götz, M. et al. Precision measurement of the quantized anomalous Hall resistance at zero magnetic field. Appl. Phys. Lett. 112, 072102 (2018).
Rodenbach, L. K. et al. Metrological assessment of quantum anomalous Hall properties. Phys. Rev. Appl. 18, 034008 (2022).
Okazaki, Y. et al. Quantum anomalous Hall effect with a permanent magnet defines a quantum resistance standard. Nat. Phys. 18, 25–29 (2022).
Patel, D. K. et al. A zero external magnetic field quantum standard of resistance at the 10−9 level. Nat. Electron. 7, 1111–1116 (2024).
Stewart, W. Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12, 277–280 (1968).
Kautz, R. L. Design and operation of series-array Josephson voltage standards. In Proc. International School of Physics ‘Enrico Fermi’, Course CX, 27 June–7 July, 1989 (eds Crovini, L. & Quinn, T. J.) 259–296 (Eslevier, 1992).
Kautz, R. L. Shapiro steps in large-area metallic-barrier Josephson junctions. J. Appl. Phys. 78, 5811–5819 (1995).
Rosen, I. T. et al. Measured potential profile in a quantum anomalous Hall system suggests bulk-dominated current flow. Phys. Rev. Lett. 129, 246602 (2022).
Lippertz, G. et al. Current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 106, 045419 (2022).
Gotz, M. et al. Improved cryogenic current comparator setup with digital current sources. IEEE Trans. Instrum. Meas. 58, 1176–1182 (2009).
Drung, D. et al. Improving the stability of cryogenic current comparator setups. Supercond. Sci. Technol. 22, 114004 (2009).
Drung, D., Götz, M., Pesel, E., Barthelmess, H. J. & Hinnrichs, C. Aspects of application and calibration of a binary compensation unit for cryogenic current comparator setups. IEEE Trans. Instrum. Meas. 62, 2820–2827 (2013).
Mise en Pratique for the Definition of the Ampere and Other Electrical Units (BIPM, 2019); www.bipm.org/documents/20126/41489676/SI-App2-ampere.pdf/0987a90e-051b-dd7f-827d-3f7b32751a61
BIPM et al. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. JCGM 100:2008 (JCGM, 2008); www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
Calibration and measurement capabilities electricity and magnetism: DC current (low and intermediate values). BIPM www.bipm.org/kcdb/ (2023).
Keller, M. W., Zimmerman, N. M. & Eichenberger, A. L. Uncertainty budget for the NIST electron counting capacitance standard, ECCS-1. Metrologia 44, 505–512 (2007).
Camarota, B. et al. Electron counting capacitance standard with an improved five-junction R-pump. Metrologia 49, 8–14 (2011).
Giblin, S. et al. Towards a quantum representation of the ampere using single electron pumps. Nat. Commun. 3, 930 (2012).
Stein, F. et al. Validation of a quantized-current source with 0.2 ppm uncertainty. Appl. Phys. Lett. 107, 103501 (2015).
Bae, M.-H. et al. Precision measurement of single-electron current with quantized Hall array resistance and Josephson voltage. Metrologia 57, 065025 (2020).
Stein, F. et al. Robustness of single-electron pumps at sub-ppm current accuracy level. Metrologia 54, S1–S8 (2016).
Yamahata, G., Giblin, S. P., Kataoka, M., Karasawa, T. & Fujiwara, A. Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 107. Appl. Phys. Lett. 109, 013101 (2016).
Zhao, R. et al. Thermal-error regime in high-accuracy gigahertz single-electron pumping. Phys. Rev. Appl. 8, 044021 (2017).
Giblin, S., Yamahata, G., Fujiwara, A. & Kataoka, M. Precision measurement of an electron pump at 2 GHz; the frontier of small DC current metrology. Metrologia 60, 055001 (2023).
Bestwick, A. et al. Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015).
White, M. et al. Direct implementation of a frequency-programmable Josephson voltage standard to provide an SI traceable optical power scale. Metrologia 61, 045002 (2024).
Fox, A. E., Dresselhaus, P. D., Rüfenacht, A., Sanders, A. & Benz, S. P. Junction yield analysis for 10 V programmable Josephson voltage standard devices. IEEE Trans. Appl. Supercond. 25, 1–5 (2014).
Fox, A. E., Butler, G., Thompson, M., Dresselhaus, P. D. & Benz, S. P. Induced current effects in Josephson voltage standard circuits. IEEE Trans. Appl. Supercond. 29, 1–8 (2019).
Rodenbach, L. K. et al. Bulk dissipation in the quantum anomalous Hall effect. APL Mater. 9, 081116 (2021).