Mills, I. M., Mohr, P. J., Quinn, T. J., Taylor, B. N. & Williams, E. R. Redefinition of the kilogram: a decision whose time has come. Metrologia 42, 71–80 (2005).


Google Scholar
 

Milton, M. J., Davis, R. & Fletcher, N. Towards a new SI: a review of progress made since 2011. Metrologia 51, R21 (2014).


Google Scholar
 

Davis, R. An introduction to the revised international system of units (si). IEEE Instrum. Meas. Mag. 22, 4–8 (2019).


Google Scholar
 

Poirier, W., Djordjevic, S., Schopfer, F. & Thévenot, O. The ampere and the electrical units in the quantum era. C. R. Phys. 20, 92–128 (2019).


Google Scholar
 

Taylor, B. & Witt, T. New international electrical reference standards based on the Josephson and quantum Hall effects. Metrologia 26, 47–62 (1989).


Google Scholar
 

Jeckelmann, B. & Jeanneret, B. The quantum Hall effect as an electrical resistance standard. Rep. Prog. Phys. 64, 1603–1655 (2001).


Google Scholar
 

Tzalenchuk, A. et al. Towards a quantum resistance standard based on epitaxial graphene. Nat. Nanotechnol. 5, 186–189 (2010).


Google Scholar
 

Schopfer, F. & Poirier, W. Quantum resistance standard accuracy close to the zero-dissipation state. J. Appl. Phys. 114, 064508 (2013).


Google Scholar
 

Ribeiro-Palau, R. et al. Quantum hall resistance standard in graphene devices under relaxed experimental conditions. Nat. Nanotechnol. 10, 965–971 (2015).


Google Scholar
 

Rigosi, A. F. & Elmquist, R. E. The quantum Hall effect in the era of the new SI. Semicond. Sci. Technol. 34, 093004 (2019).


Google Scholar
 

Bloch, F. Josephson effect in a superconducting ring. Phys. Rev. B 2, 109–121 (1970).


Google Scholar
 

Fulton, T. A. Implications of solid-state corrections to the Josephson voltage-frequency relation. Phys. Rev. B 7, 981–982 (1973).


Google Scholar
 

Clothier, W., Sloggett, G., Bairnsfather, H., Currey, M. & Benjamin, D. A determination of the volt. Metrologia 26, 9–46 (1989).


Google Scholar
 

Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys. 93, 025010 (2021).


Google Scholar
 

Keller, M. W. Current status of the quantum metrology triangle. Metrologia 45, 102–109 (2008).

MathSciNet 

Google Scholar
 

Scherer, H. & Camarota, B. Quantum metrology triangle experiments: a status review. Meas. Sci. Technol. 23, 124010 (2012).


Google Scholar
 

Hohls, F. et al. Semiconductor quantized voltage source. Phys. Rev. Lett. 109, 056802 (2012).


Google Scholar
 

Brun-Picard, J., Djordjevic, S., Leprat, D., Schopfer, F. & Poirier, W. Practical quantum realization of the ampere from the elementary charge. Phys. Rev. X 6, 041051 (2016).


Google Scholar
 

Djordjevic, S., Behr, R. & Poirier, W. A primary quantum current standard based on the Josephson and the quantum Hall effects. Nat. Commun. 16, 1447 (2025).


Google Scholar
 

Sullivan, D. & Dziuba, R. F. Low temperature direct current comparators. Rev. Sci. Instrum. 45, 517–519 (1974).


Google Scholar
 

Williams, J. Cryogenic current comparators and their application to electrical metrology. IET Sci. Meas. Technol. 5, 211–224 (2011).


Google Scholar
 

Chae, D.-H., Kim, M.-S., Kim, W.-S., Oe, T. & Kaneko, N.-H. Quantum mechanical current-to-voltage conversion with quantum Hall resistance array. Metrologia 57, 025004 (2020).


Google Scholar
 

Chae, D.-H., Kim, M.-S., Oe, T. & Kaneko, N.-H. Series connection of quantum Hall resistance array and programmable Josephson voltage standard for current generation at one microampere. Metrologia 59, 065011 (2022).


Google Scholar
 

Chen, Y. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).


Google Scholar
 

Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).


Google Scholar
 

Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y. & Tokura, Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 8, 729–733 (2012).


Google Scholar
 

Fox, E. J. et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 98, 075145 (2018).


Google Scholar
 

Götz, M. et al. Precision measurement of the quantized anomalous Hall resistance at zero magnetic field. Appl. Phys. Lett. 112, 072102 (2018).


Google Scholar
 

Rodenbach, L. K. et al. Metrological assessment of quantum anomalous Hall properties. Phys. Rev. Appl. 18, 034008 (2022).


Google Scholar
 

Okazaki, Y. et al. Quantum anomalous Hall effect with a permanent magnet defines a quantum resistance standard. Nat. Phys. 18, 25–29 (2022).


Google Scholar
 

Patel, D. K. et al. A zero external magnetic field quantum standard of resistance at the 10−9 level. Nat. Electron. 7, 1111–1116 (2024).


Google Scholar
 

Stewart, W. Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12, 277–280 (1968).


Google Scholar
 

Kautz, R. L. Design and operation of series-array Josephson voltage standards. In Proc. International School of Physics ‘Enrico Fermi’, Course CX, 27 June–7 July, 1989 (eds Crovini, L. & Quinn, T. J.) 259–296 (Eslevier, 1992).

Kautz, R. L. Shapiro steps in large-area metallic-barrier Josephson junctions. J. Appl. Phys. 78, 5811–5819 (1995).


Google Scholar
 

Rosen, I. T. et al. Measured potential profile in a quantum anomalous Hall system suggests bulk-dominated current flow. Phys. Rev. Lett. 129, 246602 (2022).


Google Scholar
 

Lippertz, G. et al. Current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 106, 045419 (2022).


Google Scholar
 

Gotz, M. et al. Improved cryogenic current comparator setup with digital current sources. IEEE Trans. Instrum. Meas. 58, 1176–1182 (2009).


Google Scholar
 

Drung, D. et al. Improving the stability of cryogenic current comparator setups. Supercond. Sci. Technol. 22, 114004 (2009).


Google Scholar
 

Drung, D., Götz, M., Pesel, E., Barthelmess, H. J. & Hinnrichs, C. Aspects of application and calibration of a binary compensation unit for cryogenic current comparator setups. IEEE Trans. Instrum. Meas. 62, 2820–2827 (2013).


Google Scholar
 

Mise en Pratique for the Definition of the Ampere and Other Electrical Units (BIPM, 2019); www.bipm.org/documents/20126/41489676/SI-App2-ampere.pdf/0987a90e-051b-dd7f-827d-3f7b32751a61

BIPM et al. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. JCGM 100:2008 (JCGM, 2008); www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf

Calibration and measurement capabilities electricity and magnetism: DC current (low and intermediate values). BIPM www.bipm.org/kcdb/ (2023).

Keller, M. W., Zimmerman, N. M. & Eichenberger, A. L. Uncertainty budget for the NIST electron counting capacitance standard, ECCS-1. Metrologia 44, 505–512 (2007).


Google Scholar
 

Camarota, B. et al. Electron counting capacitance standard with an improved five-junction R-pump. Metrologia 49, 8–14 (2011).


Google Scholar
 

Giblin, S. et al. Towards a quantum representation of the ampere using single electron pumps. Nat. Commun. 3, 930 (2012).


Google Scholar
 

Stein, F. et al. Validation of a quantized-current source with 0.2 ppm uncertainty. Appl. Phys. Lett. 107, 103501 (2015).


Google Scholar
 

Bae, M.-H. et al. Precision measurement of single-electron current with quantized Hall array resistance and Josephson voltage. Metrologia 57, 065025 (2020).


Google Scholar
 

Stein, F. et al. Robustness of single-electron pumps at sub-ppm current accuracy level. Metrologia 54, S1–S8 (2016).


Google Scholar
 

Yamahata, G., Giblin, S. P., Kataoka, M., Karasawa, T. & Fujiwara, A. Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 107. Appl. Phys. Lett. 109, 013101 (2016).


Google Scholar
 

Zhao, R. et al. Thermal-error regime in high-accuracy gigahertz single-electron pumping. Phys. Rev. Appl. 8, 044021 (2017).


Google Scholar
 

Giblin, S., Yamahata, G., Fujiwara, A. & Kataoka, M. Precision measurement of an electron pump at 2 GHz; the frontier of small DC current metrology. Metrologia 60, 055001 (2023).


Google Scholar
 

Bestwick, A. et al. Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015).


Google Scholar
 

White, M. et al. Direct implementation of a frequency-programmable Josephson voltage standard to provide an SI traceable optical power scale. Metrologia 61, 045002 (2024).


Google Scholar
 

Fox, A. E., Dresselhaus, P. D., Rüfenacht, A., Sanders, A. & Benz, S. P. Junction yield analysis for 10 V programmable Josephson voltage standard devices. IEEE Trans. Appl. Supercond. 25, 1–5 (2014).


Google Scholar
 

Fox, A. E., Butler, G., Thompson, M., Dresselhaus, P. D. & Benz, S. P. Induced current effects in Josephson voltage standard circuits. IEEE Trans. Appl. Supercond. 29, 1–8 (2019).


Google Scholar
 

Rodenbach, L. K. et al. Bulk dissipation in the quantum anomalous Hall effect. APL Mater. 9, 081116 (2021).


Google Scholar
Â