Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).


Google Scholar
 

Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019).

ADS 

Google Scholar
 

Ku, M. J. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).

ADS 

Google Scholar
 

Bandurin, D. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

ADS 

Google Scholar
 

Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).


Google Scholar
 

Son, D. Quantum critical point in graphene approached in the limit of infinitely strong Coulomb interaction. Phys. Rev. B 75, 235423 (2007).

ADS 

Google Scholar
 

Hartnoll, S. A., Kovtun, P. K., Müller, M. & Sachdev, S. Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes. Phys. Rev. B 76, 144502 (2007).

ADS 

Google Scholar
 

Fritz, L., Schmalian, J., Müller, M. & Sachdev, S. Quantum critical transport in clean graphene. Phys. Rev. B 78, 085416 (2008).

ADS 

Google Scholar
 

Lucas, A., Crossno, J., Fong, K. C., Kim, P. & Sachdev, S. Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene. Phys. Rev. B 93, 075426 (2016).

ADS 

Google Scholar
 

Xie, H. Y. & Foster, M. S. Transport coefficients of graphene: interplay of impurity scattering, Coulomb interaction, and optical phonons. Phys. Rev. B 93, 195103 (2016).

ADS 

Google Scholar
 

Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys.: Cond. Mat. 30, 053001 (2018).

ADS 

Google Scholar
 

Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 351, 1058–1061 (2016).

ADS 

Google Scholar
 

Ghahari, F. et al. Enhanced thermoelectric power in graphene: violation of the Mott relation by inelastic scattering. Phys. Rev. Lett. 116, 136802 (2016).

ADS 

Google Scholar
 

Xin, N. et al. Giant magnetoresistance of Dirac plasma in high-mobility graphene. Nature 616, 270–274 (2023).

ADS 

Google Scholar
 

Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158–162 (2019).

ADS 
MathSciNet 

Google Scholar
 

Block, A. et al. Observation of giant and tunable thermal diffusivity of a Dirac fluid at room temperature. Nat. Nanotechnol. 16, 1195–1200 (2021).

ADS 

Google Scholar
 

Adam, S., Hwang, E., Galitski, V. & Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

ADS 

Google Scholar
 

Tu, Y.-T. & Sarma, S. D. Wiedemann-Franz law in graphene. Phys. Rev. B 107, 085401 (2023).

ADS 

Google Scholar
 

Ponomarenko, L. A. et al. Extreme electron–hole drag and negative mobility in the Dirac plasma of graphene. Nat. Commun. 15, 9869 (2024).


Google Scholar
 

Kumar, C. et al. Imaging hydrodynamic electrons flowing without Landauer-Sharvin resistance. Nature 609, 276–281 (2022).

ADS 

Google Scholar
 

Müller, M., Fritz, L. & Sachdev, S. Quantum-critical relativistic magnetotransport in graphene. Phys. Rev. B 78, 115406 (2008).

ADS 

Google Scholar
 

Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).

ADS 

Google Scholar
 

Li, S., Andreev, A. & Levchenko, A. Hydrodynamic electron transport in graphene Hall-bar devices. Phys. Rev. B 105, 155307 (2022).

ADS 

Google Scholar
 

Huang, W. et al. Electronic Poiseuille flow in hexagonal boron nitride encapsulated graphene field effect transistors. Phys. Rev. Res. 5, 023075 (2023).


Google Scholar
 

Pellegrino, F. M., Torre, I., Geim, A. K. & Polini, M. Electron hydrodynamics dilemma: whirlpools or no whirlpools. Phys. Rev. B 94, 155414 (2016).

ADS 

Google Scholar
 

Betz, A. C. et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

ADS 

Google Scholar
 

Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

ADS 

Google Scholar
 

Fong, K. C. et al. Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature. Phys. Rev. X 3, 041008 (2013).


Google Scholar
 

Yudhistira, I., Afrose, R. & Adam, S. Non-monotonic temperature dependence of electron viscosity and crossover to high-temperature universal viscous fluid in monolayer and bilayer graphene. Phys. Rev. B 111, 085433 (2025).


Google Scholar
 

Damle, K. & Sachdev, S. Nonzero-temperature transport near quantum critical points. Phys. Rev. B 56, 8714 (1997).

ADS 

Google Scholar
 

Fisher, M. P., Grinstein, G. & Girvin, S. Presence of quantum diffusion in two dimensions: universal resistance at the superconductor-insulator transition. Phys. Rev. Lett. 64, 587 (1990).

ADS 

Google Scholar
 

Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009).

ADS 

Google Scholar
 

Kovtun, P. K., Son, D. T. & Starinets, A. O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005).

ADS 

Google Scholar
 

Chen, W. & Zhu, W. Viscosity of disordered Dirac electrons. Phys. Rev. B 106, 014205 (2022).

ADS 

Google Scholar