Wallquist, M., Hammerer, K., Rabl, P., Lukin, M. & Zoller, P. Hybrid quantum devices and quantum engineering. Phys. Scr. 2009, 014001 (2009).


Google Scholar
 

Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA 112, 3866–3873 (2015).

ADS 

Google Scholar
 

Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).


Google Scholar
 

Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

ADS 

Google Scholar
 

de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

ADS 

Google Scholar
 

Galliou, S. et al. Extremely low loss phonon-trapping cryogenic acoustic cavities for future physical experiments. Sci. Rep. 3, 2132 (2013).


Google Scholar
 

Engelsen, N. J., Beccari, A. & Kippenberg, T. J. Ultrahigh-quality-factor micro- and nanomechanical resonators using dissipation dilution. Nat. Nanotechnol. 19, 725–737 (2024).


Google Scholar
 

MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

ADS 

Google Scholar
 

Samanta, C. et al. Nonlinear nanomechanical resonators approaching the quantum ground state. Nat. Phys. 19, 1340–1344 (2023).


Google Scholar
 

Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum 3, 010329 (2022).

ADS 

Google Scholar
 

Hann, C. T. et al. Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Phys. Rev. Lett. 123, 250501 (2019).

ADS 

Google Scholar
 

Pechal, M., Arrangoiz-Arriola, P. & Safavi-Naeini, A. H. Superconducting circuit quantum computing with nanomechanical resonators as storage. Quantum Sci. Technol. 4, 015006 (2018).

ADS 

Google Scholar
 

Chu, Y. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical systems. Appl. Phys. Lett. 117, 150503 (2020).

ADS 

Google Scholar
 

Pirkkalainen, J.-M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).

ADS 

Google Scholar
 

Ma, X., Viennot, J. J., Kotler, S., Teufel, J. D. & Lehnert, K. W. Non-classical energy squeezing of a macroscopic mechanical oscillator. Nat. Phys. 17, 322–326 (2021).


Google Scholar
 

LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

ADS 

Google Scholar
 

Rouxinol, F. et al. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system. Nanotechnology 27, 364003 (2016).


Google Scholar
 

O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

ADS 

Google Scholar
 

Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

ADS 
MathSciNet 

Google Scholar
 

Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).

ADS 

Google Scholar
 

Bild, M. et al. Schrödinger cat states of a 16-microgram mechanical oscillator. Science 380, 274–278 (2023).

ADS 

Google Scholar
 

Qiao, H. et al. Splitting phonons: building a platform for linear mechanical quantum computing. Science 380, 1030–1033 (2023).

ADS 
MathSciNet 

Google Scholar
 

Ganjam, S. et al. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design. Nat. Commun. 15, 3687 (2024).

ADS 

Google Scholar
 

Crowley, K. D. et al. Disentangling losses in tantalum superconducting circuits. Phys. Rev. X 13, 041005 (2023).


Google Scholar
 

Tuokkola, M. et al. Methods to achieve near-millisecond energy relaxation and dephasing times for a superconducting transmon qubit. Preprint at https://arxiv.org/abs/2407.18778 (2024).

McGuigan, D. F. et al. Measurements of the mechanical Q of single-crystal silicon at low temperatures. J. Low Temp. Phys. 30, 621–629 (1978).

ADS 

Google Scholar
 

Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).


Google Scholar
 

Tao, Y., Boss, J. M., Moores, B. A. & Degen, C. L. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 5, 3638 (2014).

ADS 

Google Scholar
 

Liu, Y. et al. Degeneracy-breaking and long-lived microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals. Nat. Commun. 16, 1207 (2025).


Google Scholar
 

Behunin, R. O., Intravaia, F. & Rakich, P. T. Dimensional transformation of defect-induced noise, dissipation, and nonlinearity. Phys. Rev. B 93, 224110 (2016).

ADS 

Google Scholar
 

Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 15, 745–749 (2019).


Google Scholar
 

McCormick, K. C. et al. Quantum-enhanced sensing of a single-ion mechanical oscillator. Nature 572, 86–90 (2019).

ADS 

Google Scholar
 

Barzanjeh, S. et al. Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2022).


Google Scholar
 

Bozkurt, A. et al. A quantum electromechanical interface for long-lived phonons. Nat. Phys. 19, 1326–1332 (2023).


Google Scholar
 

Wollack, E. A. et al. Loss channels affecting lithium niobate phononic crystal resonators at cryogenic temperature. Appl. Phys. Lett. 118, 123501 (2021).

ADS 

Google Scholar
 

Mason, W. P. & McSkimin, H. J. Attenuation and scattering of high frequency sound waves in metals and glasses. J. Acoust. Soc. Am. 19, 464–473 (1947).

ADS 

Google Scholar
 

Catto, G. et al. Microwave response of a metallic superconductor subject to a high-voltage gate electrode. Sci. Rep. 12, 6822 (2022).

ADS 

Google Scholar
 

Geerlings, K. et al. Demonstrating a driven reset protocol for a superconducting qubit. Phys. Rev. Lett. 110, 120501 (2013).

ADS 

Google Scholar
 

Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

ADS 

Google Scholar
 

Chu, Y. et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature 563, 666–670 (2018).

ADS 

Google Scholar
 

Yang, Y. et al. A mechanical qubit. Science 386, 783–788 (2024).

MathSciNet 

Google Scholar
 

Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

ADS 

Google Scholar
 

Cleland, A. Y., Wollack, E. A. & Safavi-Naeini, A. H. Studying phonon coherence with a quantum sensor. Nat. Commun. 15, 4979 (2024).

ADS 

Google Scholar
 

Emser, A. L., Metzger, C., Rose, B. C. & Lehnert, K. W. Thin-film quartz for high-coherence piezoelectric phononic crystal resonators. Phys. Rev. Appl. 22, 064032 (2024).


Google Scholar
 

Kleiman, R. N., Agnolet, G. & Bishop, D. J. Two-level systems observed in the mechanical properties of single-crystal silicon at low temperatures. Phys. Rev. Lett. 59, 2079–2082 (1987).

ADS 

Google Scholar
 

von Lüpke, U. et al. Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics. Nat. Phys. 18, 794–799 (2022).


Google Scholar
 

Wallucks, A., Marinković, I., Hensen, B., Stockill, R. & Gröblacher, S. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020).


Google Scholar
 

Lisenfeld, J. et al. Electric field spectroscopy of material defects in transmon qubits. npj Quantum Inf 5, 105 (2019).

ADS 

Google Scholar
 

Sarabi, B., Ramanayaka, A. N., Burin, A. L., Wellstood, F. C. & Osborn, K. D. Projected dipole moments of individual two-level defects extracted using circuit quantum electrodynamics. Phys. Rev. Lett. 116, 167002 (2016).

ADS 

Google Scholar
 

Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. 50, 1657–1708 (1987).

ADS 

Google Scholar
 

Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630 (1954).

ADS 

Google Scholar
 

Arenz, C., Burgarth, D. & Hillier, R. Dynamical decoupling and homogenization of continuous variable systems. J. Phys. A 50, 135303 (2017).

ADS 
MathSciNet 

Google Scholar
 

Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005).

ADS 

Google Scholar
 

Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).


Google Scholar
 

Chakram, S. et al. Multimode photon blockade. Nat. Phys. 18, 879–884 (2022).


Google Scholar
 

Jones, W. M., Lukin, D. & Scherer, A. Practical nanoscale field emission devices for integrated circuits. Appl. Phys. Lett. 110, 263101 (2017).

ADS 

Google Scholar
 

Najera-Santos, B.-L. et al. High-sensitivity ac-charge detection with a MHz-frequency fluxonium qubit. Phys. Rev. X 14, 011007 (2024).


Google Scholar
 

Lee, N. R. et al. Strong dispersive coupling between a mechanical resonator and a fluxonium superconducting qubit. PRX Quantum 4, 040342 (2023).

ADS 

Google Scholar
 

Rosenberg, D. et al. 3D integrated superconducting qubits. npj Quantum Inf 3, 42 (2017).

ADS 

Google Scholar
 

Conner, C. R. et al. Superconducting qubits in a flip-chip architecture. Appl. Phys. Lett. 118, 232602 (2021).

ADS 

Google Scholar
 

Guillaud, J. & Mirrahimi, M. Repetition cat qubits for fault-tolerant quantum computation. Phys. Rev. X 9, 041053 (2019).


Google Scholar
 

Tuckett, D. K., Bartlett, S. D. & Flammia, S. T. Ultrahigh error threshold for surface codes with biased noise. Phys. Rev. Lett. 120, 050505 (2018).

ADS 

Google Scholar
 

Jeffrey, E. et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014).

ADS 

Google Scholar
 

Sank, D. et al. System characterization of dispersive readout in superconducting qubits. Phys. Rev. Appl. 23, 024055 (2025).


Google Scholar
 

Zhang, Y. et al. Engineering bilinear mode coupling in circuit QED: theory and experiment. Phys. Rev. A 99, 012314 (2019).

ADS 

Google Scholar
 

Keller, A. J. et al. Al transmon qubits on silicon-on-insulator for quantum device integration. Appl. Phys. Lett. 111, 042603 (2017).

ADS 

Google Scholar
 

Card, H. Aluminum–silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Trans. Electron Devices 23, 538–544 (1976).

ADS 

Google Scholar
 

Bozkurt, A. B., Golami, O., Yu, Y., Tian, H. & Mirhosseini, M. Data for the article entitled: ‘A mechanical quantum memory for microwave photons’. Zenodo https://doi.org/10.5281/zenodo.15069397 (2025).