Erwin, D. H. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development 147, dev182899 (2020).

CAS 
PubMed 

Google Scholar
 

Bone, Q., Kapp, H. & Pierrot-Bults, A. C. The Biology of Chaetognaths (Oxford Univ. Press, 1991).

Rieger, V. et al. Immunohistochemical analysis and 3D reconstruction of the cephalic nervous system in Chaetognatha: insights into the evolution of an early bilaterian brain? Invertebr. Biol. 129, 77–104 (2010).


Google Scholar
 

Müller, C. H. G., Rieger, V., Perez, Y. & Harzsch, S. Immunohistochemical and ultrastructural studies on ciliary sense organs of arrow worms (Chaetognatha). Zoomorphology 133, 167–189 (2014).


Google Scholar
 

Marlétaz, F., Peijnenburg, K. T. C. A., Goto, T., Satoh, N. & Rokhsar, D. S. A new spiralian phylogeny places the enigmatic arrow worms among Gnathiferans. Curr. Biol. 29, 312–318.e3 (2019).

PubMed 

Google Scholar
 

Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. Biol. Sci. 286, 20190831 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martín-Zamora, F. M. et al. Annelid functional genomics reveal the origins of bilaterian life cycles. Nature 615, 105–110 (2023).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Telford, M. J. & Holland, P. W. Evolution of 28S ribosomal DNA in chaetognaths: duplicate genes and molecular phylogeny. J. Mol. Evol. 44, 135–144 (1997).

ADS 
CAS 
PubMed 

Google Scholar
 

Marlétaz, F. et al. Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol. 9, R94 (2008).

PubMed 
PubMed Central 

Google Scholar
 

Park, T.-Y. S. et al. A giant stem-group chaetognath. Sci. Adv. 10, eadi6678 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vinther, J. & Parry, L. A. Bilateral jaw elements in Amiskwia sagittiformis bridge the morphological gap between Gnathiferans and Chaetognaths. Curr. Biol. 29, 881–888.e1 (2019).

CAS 
PubMed 

Google Scholar
 

Satoh, N. Chordate Origins and Evolution (Elsevier, 2016).

Budd, G. E. & Telford, M. J. The origin and evolution of arthropods. Nature 457, 812–817 (2009).

ADS 
CAS 
PubMed 

Google Scholar
 

Chen, H. et al. A Cambrian crown annelid reconciles phylogenomics and the fossil record. Nature 583, 249–252 (2020).

ADS 
CAS 
PubMed 

Google Scholar
 

John, C. C. Memoirs: habits, structure, and development of Spadella cephaloptera. Q. J. Microsc. Sci. 75, 625–696 (1933).


Google Scholar
 

Telford, M. J. & Holland, P. W. The phylogenetic affinities of the chaetognaths: a molecular analysis. Mol. Biol. Evol. 10, 660–676 (1993).

CAS 
PubMed 

Google Scholar
 

Fröbius, A. C. & Funch, P. Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans. Nat. Commun. 8, 9 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Papillon, D., Perez, Y., Fasano, L., Le Parco, Y. & Caubit, X. Hox gene survey in the chaetognath Spadella cephaloptera: evolutionary implications. Dev. Genes Evol. 213, 142–148 (2003).

CAS 
PubMed 

Google Scholar
 

Bekkouche, N. & Gąsiorowski, L. Careful amendment of morphological data sets improves phylogenetic frameworks: re-evaluating placement of the fossil Amiskwia sagittiformis. J. Syst. Palaeontol. 20, 1–14 (2022).


Google Scholar
 

Marlétaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Parey, E. et al. The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat. Ecol. Evol. 8, 1505–1521 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).

ADS 
CAS 
PubMed 

Google Scholar
 

Luo, Y.-J. et al. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat. Commun. 6, 8301 (2015).

ADS 
CAS 
PubMed 

Google Scholar
 

Simion, P. et al. Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer Adineta vaga. Sci. Adv. 7, eabg4216 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Flot, J.-F. et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature 500, 453–457 (2013).

ADS 
CAS 
PubMed 

Google Scholar
 

Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

CAS 
PubMed 

Google Scholar
 

Goto, T. & Yoshida, M. The mating sequence of the benthic arrowworm Spadella schizoptera. Biol. Bull. 169, 328–333 (1985).

PubMed 

Google Scholar
 

Ren-feng, W. Analysis of chromosome karyotypes in Chaetognath Sagitta crassa. J. Dalian Fish. Univ. 26, 260–263 (2011).


Google Scholar
 

Lewin, T. D. et al. Fusion, fission, and scrambling of the bilaterian genome in Bryozoa. Genome Res. 35, 78–92 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guijarro-Clarke, C., Holland, P. W. H. & Paps, J. Widespread patterns of gene loss in the evolution of the animal kingdom. Nat. Ecol. Evol. 4, 519–523 (2020).

PubMed 

Google Scholar
 

Senaratne, A. P. et al. Formation of the CenH3-deficient holocentromere in Lepidoptera avoids active chromatin. Curr. Biol. 31, 173–181.e7 (2021).

CAS 
PubMed 

Google Scholar
 

Hofstatter, P. G. et al. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185, 3153–3168.e18 (2022).

CAS 
PubMed 

Google Scholar
 

Lewin, T. D., Liao, I. J.-Y. & Luo, Y.-J. Annelid comparative genomics and the evolution of massive lineage-specific genome rearrangement in bilaterians. Mol. Biol. Evol. 41, msae172 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Muller, H., Gil, J. Jr & Drinnenberg, I. A. The impact of centromeres on spatial genome architecture. Trends Genet. 35, 565–578 (2019).

CAS 
PubMed 

Google Scholar
 

Houtain, A. et al. Transgenerational chromosome repair in the asexual bdelloid rotifer Adineta vaga. Preprint at bioRxiv https://doi.org/10.1101/2024.01.25.577190 (2024).

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Álvarez-Campos, P. et al. Annelid adult cell type diversity and their pluripotent cellular origins. Nat. Commun. 15, 3194 (2024).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Piovani, L. et al. Single-cell atlases of two lophotrochozoan larvae highlight their complex evolutionary histories. Sci. Adv. 9, eadg6034 (2023).

MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, J. et al. Deep learning of cross-species single-cell landscapes identifies conserved regulatory programs underlying cell types. Nat. Genet. 54, 1711–1720 (2022).

CAS 
PubMed 

Google Scholar
 

Rieger, V. et al. Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Dev. Growth Differ. 53, 740–759 (2011).

PubMed 

Google Scholar
 

Wollesen, T., Rodriguez Monje, S. V., Oel, A. P. & Arendt, D. Characterization of eyes, photoreceptors, and opsins in developmental stages of the arrow worm Spadella cephaloptera (Chaetognatha). J. Exp. Zool. B 340, 342–353 (2023).

CAS 

Google Scholar
 

Wu, L. et al. Genes with spiralian-specific protein motifs are expressed in spiralian ciliary bands. Nat. Commun. 11, 4171 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yasuda, E., Goto, T., Makabe, K. W. & Satoh, N. Expression of actin genes in the arrow worm Paraspadella gotoi (Chaetognatha). Zoolog. Sci. 14, 953–960 (1997).

CAS 
PubMed 

Google Scholar
 

Carré, D., Djediat, C. & Sardet, C. Formation of a large Vasa-positive germ granule and its inheritance by germ cells in the enigmatic Chaetognaths. Development 129, 661–670 (2002).

PubMed 

Google Scholar
 

Piovani, L. & Marlétaz, F. Single-cell transcriptomics refuels the exploration of spiralian biology. Brief. Funct. Genomics 22, 517–524 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Goto, T. & Yoshida, M. in Nervous Systems in Invertebrates (ed. Ali, M. A.) 461–481 (Springer, 1987).

Ahnelt, P. Chaetognatha. in Biology of the Integument: Invertebrates (eds. Bereiter-Hahn, J., Matoltsy, A. G. & Richards, K. S.) 746–755 (Springer, 1984).

Valencia-Montoya, W. A., Pierce, N. E. & Bellono, N. W. Evolution of sensory receptors. Annu. Rev. Cell Dev. Biol. 40, 353–379 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vakirlis, N., Carvunis, A.-R. & McLysaght, A. Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes. eLife 9, e53500 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Maeso, I., Acemel, R. D. & Gómez-Skarmeta, J. L. Cis-regulatory landscapes in development and evolution. Curr. Opin. Genet. Dev. 43, 17–22 (2017).

CAS 
PubMed 

Google Scholar
 

de Mendoza, A. et al. Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat. Ecol. Evol. 3, 1464–1473 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Rošić, S. et al. Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat. Genet. 50, 452–459 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Kim, I. V. et al. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 642, 1097–1105 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guynes, K. et al. Annelid methylomes reveal ancestral developmental and aging-associated epigenetic erosion across Bilateria. Genome Biol. 25, 204 (2024)

Schwaiger, M. et al. Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 24, 639–650 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).

ADS 
CAS 
PubMed 

Google Scholar
 

Zaslaver, A., Baugh, L. R. & Sternberg, P. W. Metazoan operons accelerate recovery from growth-arrested states. Cell 145, 981–992 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Douris, V., Telford, M. J. & Averof, M. Evidence for multiple independent origins of trans-splicing in Metazoa. Mol. Biol. Evol. 27, 684–693 (2010).

CAS 
PubMed 

Google Scholar
 

Danks, G. B. et al. Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest. Mol. Biol. Evol. 32, 585–599 (2015).

CAS 
PubMed 

Google Scholar
 

Wilson, C. G., Pieszko, T., Nowell, R. W. & Barraclough, T. G. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet. 40, 422–436 (2024).

CAS 
PubMed 

Google Scholar
 

Morel, B., Kozlov, A. M., Stamatakis, A. & Szöllősi, G. J. GeneRax: a tool for species-tree-aware maximum likelihood-based gene family tree inference under gene duplication, transfer, and loss. Mol. Biol. Evol. 37, 2763–2774 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Goto, T. & Yoshida, M. Growth and reproduction of the benthic arrowworm Paraspadella gotoi (Chaetognatha) in laboratory culture. Invertebr. Reprod. Dev. 32, 201–207 (1997).


Google Scholar
 

Green, M. R. & Sambrook, J. Molecular Cloning. A Laboratory Manual 4th edn (2012).

Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chapman, J. A. et al. Meraculous: de novo genome assembly with short paired-end reads. PLoS ONE 6, e23501 (2011).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820–830 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

PubMed 

Google Scholar
 

Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

PubMed 
PubMed Central 

Google Scholar
 

Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

CAS 
PubMed 

Google Scholar
 

Klopfenstein, D. V. et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci Rep. 8, 10872 (2018).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Derelle, R., Philippe, H. & Colbourne, J. K. Broccoli: combining phylogenetic and network analyses for orthology assignment. Mol. Biol. Evol. 37, 3389–3396 (2020).

CAS 
PubMed 

Google Scholar
 

Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Steenwyk, J. L., Buida, T. J. 3rd, Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

CAS 
PubMed 

Google Scholar
 

Barrera-Redondo, J., Lotharukpong, J. S., Drost, H.-G. & Coelho, S. M. Uncovering gene-family founder events during major evolutionary transitions in animals, plants and fungi using GenEra. Genome Biol. 24, 54 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

CAS 
PubMed 

Google Scholar
 

Benton M. J., Donoghue P. C. J. & Asher R. J. in The Timetree Of Life (ed. Kumar, S. B. H.) 35–86 (Oxford Univ. Press, 2009).

Rota-Stabelli, O., Daley, A. C. & Pisani, D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 23, 392–398 (2013).

CAS 
PubMed 

Google Scholar
 

Vannier, J., Steiner, M., Renvoisé, E., Hu, S.-X. & Casanova, J.-P. Early Cambrian origin of modern food webs: evidence from predator arrow worms. Proc. Biol. Sci. 274, 627–633 (2007).

CAS 
PubMed 

Google Scholar
 

Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36, 5516–5518 (2021).

PubMed 

Google Scholar
 

Matus, D. Q., Halanych, K. M. & Martindale, M. Q. The Hox gene complement of a pelagic chaetognath, Flaccisagitta enflata. Integr. Comp. Biol. 47, 854 (2007).

CAS 
PubMed 

Google Scholar
 

Open2C, et al. Pairtools: from sequencing data to chromosome contacts. PLoS Comput. Biol. 20, e1012164 (2024).

Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2013).

MathSciNet 
MATH 

Google Scholar
 

Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Marlétaz, F. et al. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. Cell Genomics 3, 100295 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wenzel, M. A., Müller, B. & Pettitt, J. SLIDR and SLOPPR: flexible identification of spliced leader trans-splicing and prediction of eukaryotic operons from RNA-seq data. BMC Bioinformatics 22, 140 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

CAS 
PubMed 

Google Scholar
 

Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

CAS 
PubMed 

Google Scholar
 

Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. A benchmark of gene expression tissue-specificity metrics. Brief. Bioinformatics 18, 205–214 (2016).


Google Scholar
 

García-Castro, H. et al. ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol. 22, 89 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Hejnol, A. & Martindale, M. Q. Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456, 382–386 (2008).

ADS 
CAS 
PubMed 

Google Scholar
 

Hejnol, A. In situ protocol for embryos and juveniles of Convolutriloba longifissura. Protoc. Exch. https://doi.org/10.1038/nprot.2008.201 (2008).

Marlétaz, F. et al. The genomic origin of the unique chaetognath body plan [Data set]. Zenodo https://doi.org/10.5281/zenodo.13936459 (2024).

Gąsiorowski, L., Martín-Durán, J. M. & Hejnolin, A. in Hox Modules in Evolution and Development (ed. Ferrier, D. E. K.) 177–194 (CRC, 2023).