Hug, C. B. & Vaquerizas, J. M. The birth of the 3D genome during early embryonic development. Trends Genet. 34, 903–914 (2018).

CAS 
PubMed 

Google Scholar
 

Du, Z., Zhang, K. & Xie, W. Epigenetic reprogramming in early animal development. Cold Spring Harb. Perspect. Biol. 14, a039677 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

CAS 
PubMed 

Google Scholar
 

Dekker, J. & Misteli, T. Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol. 7, a019356 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Van Bortle, K. & Corces, V. G. Nuclear organization and genome function. Annu. Rev. Cell Dev. Biol. 28, 163–187 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

CAS 
PubMed 

Google Scholar
 

Banigan, E. J. & Mirny, L. A. Loop extrusion: theory meets single-molecule experiments. Curr. Opin. Cell Biol. 64, 124–138 (2020).

CAS 
PubMed 

Google Scholar
 

Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

CAS 
PubMed 

Google Scholar
 

Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Davidson, I. F. et al. Rapid movement and transcriptional re-localization of human cohesin on DNA. EMBO J. 35, 2671–2685 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Banigan, E. J. et al. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc. Natl Acad. Sci. USA 120, e2210480120 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573–578 (2004).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Olan, I. et al. Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence. Nat. Commun. 11, 6049 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Heinz, S. et al. Transcription elongation can affect genome 3D structure. Cell 174, 1522–1536 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).

ADS 
CAS 
PubMed 

Google Scholar
 

Ke, Y. et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381 (2017).

CAS 
PubMed 

Google Scholar
 

Jiang, Y. et al. Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol II, and Pol III. Genome Biol. 21, 158 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228 (2017).

CAS 
PubMed 

Google Scholar
 

Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, H. Y. et al. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 576, 158–162 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Chen, X. et al. Key role for CTCF in establishing chromatin structure in human embryos. Nature 576, 306–310 (2019).

CAS 
PubMed 

Google Scholar
 

Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

ADS 

Google Scholar
 

Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016).

ADS 
CAS 
PubMed 

Google Scholar
 

Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Buhler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451 (2019).

CAS 
PubMed 

Google Scholar
 

Wang, W. et al. ADNP modulates SINE B2-derived CTCF-binding sites during blastocyst formation in mice. Genes Dev. 38, 168–188 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xiong, Z. et al. Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat. Cell Biol. 24, 968–980 (2022).

CAS 
PubMed 

Google Scholar
 

Gassler, J. et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J. 36, 3600–3618 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, B. et al. The landscape of RNA Pol II binding reveals a stepwise transition during ZGA. Nature 587, 139–144 (2020).

ADS 
CAS 
PubMed 

Google Scholar
 

Jia, Y. W., Hartshorn, C., Hartung, O. & Wangh, L. J. Heat shock memory in preimplantation mouse embryos. Fertil. Steril. 93, 2760–2763 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vilborg, A. et al. Comparative analysis reveals genomic features of stress-induced transcriptional readthrough. Proc. Natl Acad. Sci. USA 114, E8362–E8371 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mahat, D. B., Salamanca, H. H., Duarte, F. M., Danko, C. G. & Lis, J. T. Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol. Cell 62, 63–78 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gao, Y. et al. Protein expression landscape of mouse embryos during pre-implantation development. Cell Rep. 21, 3957–3969 (2017).

CAS 
PubMed 

Google Scholar
 

Benayoun, B. A. et al. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158, 673–688 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, K. et al. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat. Genet. 47, 1149–1157 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dall’Agnese, A. & Young, R. Regulatory architecture of cell identity genes and housekeeping genes. Trends Cell Biol. 33, 1010–1013 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Ji, S. et al. OBOX regulates mouse zygotic genome activation and early development. Nature 620, 1047–1053 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lai, F. et al. NR5A2 connects zygotic genome activation to the first lineage segregation in totipotent embryos. Cell Res. 33, 952–966 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, L. et al. Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos. Nat. Struct. Mol. Biol. 31, 950–963 (2024).

CAS 
PubMed 

Google Scholar
 

Kim, E., Barth, R. & Dekker, C. Looping the genome with SMC complexes. Annu. Rev. Biochem. 92, 15–41 (2023).

CAS 
PubMed 

Google Scholar
 

Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hsieh, T. H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Meier, M. et al. Cohesin facilitates zygotic genome activation in zebrafish. Development 145, dev156521 (2018).

PubMed 

Google Scholar
 

Wike, C. L. et al. Chromatin architecture transitions from zebrafish sperm through early embryogenesis. Genome Res. 31, 981–994 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nakamura, R. et al. CTCF looping is established during gastrulation in medaka embryos. Genome Res. 31, 968–980 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Andreu, M. J. et al. Establishment of 3D chromatin structure after fertilization and the metabolic switch at the morula-to-blastocyst transition require CTCF. Cell Rep. 41, 111501 (2022).

CAS 
PubMed 

Google Scholar
 

Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380–1388 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kruse, K. et al. Transposable elements drive reorganisation of 3D chromatin during early embryogenesis. Preprint at bioRxiv https://doi.org/10.1101/523712 (2019).

Niu, L. et al. Three-dimensional folding dynamics of the Xenopus tropicalis genome. Nat. Genet. 53, 1075–1087 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, X. M. et al. Size-dependent increase in RNA polymerase II initiation rates mediates gene expression scaling with cell size. Curr. Biol. 30, 1217–1230 (2020).

CAS 
PubMed 

Google Scholar
 

Swaffer, M. P. et al. RNA polymerase II dynamics and mRNA stability feedback scale mRNA amounts with cell size. Cell 186, 5254–5268 (2023).

CAS 
PubMed 

Google Scholar
 

Boskovic, A. et al. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 28, 1042–1047 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Burton, A. et al. Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3. Nat. Cell Biol. 22, 767–778 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arias, A. M. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7, 34–44 (2006).

CAS 
PubMed 

Google Scholar
 

Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557 (2016).

ADS 
CAS 
PubMed 

Google Scholar
 

Wang, Q. et al. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat. Genet. 52, 828–839 (2020).

CAS 
PubMed 

Google Scholar
 

Xia, W. et al. Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353–360 (2019).

ADS 
CAS 
PubMed 

Google Scholar
 

Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

CAS 
PubMed 

Google Scholar
 

Brind’Amour, J. et al. LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nat. Commun. 9, 3331 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

CAS 
PubMed 

Google Scholar
 

Clift, D. et al. A method for the acute and rapid degradation of endogenous proteins. Cell 171, 1692–1706 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

CAS 
PubMed 

Google Scholar
 

Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

CAS 
PubMed 

Google Scholar
 

Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

CAS 
PubMed 

Google Scholar
 

Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

Percharde, M., Wong, P. & Ramalho-Santos, M. Global hypertranscription in the mouse embryonic germline. Cell Rep. 19, 1987–1996 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316 (2020).

CAS 
PubMed 

Google Scholar
 

Open2C et al. Cooltools: enabling high-resolution Hi-C analysis in Python. PLoS Comput. Biol. 20, e1012067 (2024).

PubMed Central 

Google Scholar
 

Flyamer, I. M., Illingworth, R. S. & Bickmore, W. A. Coolpup.py: versatile pile-up analysis of Hi-C data. Bioinformatics 36, 2980–2985 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, Y. Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

PubMed 
PubMed Central 

Google Scholar
 

Tu, S. Q. et al. MAnorm2 for quantitatively comparing groups of ChIP-seq samples. Genome Res. 31, 131–145 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066–1079 (2016).

CAS 
PubMed 

Google Scholar
 

Hounkpe, B. W., Chenou, F., de Lima, F. & De Paula, E. V. HRT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets. Nucleic Acids Res. 49, D947–D955 (2021).

CAS 
PubMed 

Google Scholar
 

Xu, S. L. Y., Grullon, S., Ge, K. & Peng, W. Q. Spatial Clustering for Identification of ChIP-Enriched Regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. Methods Mol. Biol. 1150, 97–111 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stovner, E. B. & Saetrom, P. epic2 efficiently finds diffuse domains in ChIP-seq data. Bioinformatics 35, 4392–4393 (2019).

CAS 
PubMed 

Google Scholar
 

Xia, B. et al. Machine learning uncovers cell identity regulator by histone code. Nat. Commun. 11, 2696 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552 (2016).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, B. et al. Mapping putative enhancers in mouse oocytes and early embryos reveals TCF3/12 as key folliculogenesis regulators. Nat. Cell Biol. 26, 962–974 (2024).

CAS 
PubMed 

Google Scholar
 

Chen, K. et al. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 23, 341–351 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, X. O., Gingeras, T. R. & Weng, Z. Genome-wide analysis of polymerase III-transcribed Alu elements suggests cell-type-specific enhancer function. Genome Res. 29, 1402–1414 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hammal, F., de Langen, P., Bergon, A., Lopez, F. & Ballester, B. ReMap 2022: a database of human, mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 50, D316–D325 (2022).

CAS 
PubMed 

Google Scholar
 

Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. zUMIs – a fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience 7, giy059 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 23, 27 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hoetker, M. S. et al. H3K36 methylation maintains cell identity by regulating opposing lineage programmes. Nat. Cell Biol. 25, 1121–1134 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Meir, Z., Mukamel, Z., Chomsky, E., Lifshitz, A. & Tanay, A. Single-cell analysis of clonal maintenance of transcriptional and epigenetic states in cancer cells. Nat. Genet. 52, 709–718 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Guang, Y. Custom scripts in “Interplay between hyper transcription and de novo establishment of 3D chromatin architecture in early mammalian embryos”. Zenodo https://doi.org/10.5281/zenodo.13753153 (2024).