Goryachev, M. et al. High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014).

ADS 

Google Scholar
 

Everts, J. R. et al. Ultrastrong coupling between a microwave resonator and antiferromagnetic resonances of rare-earth ion spins. Phys. Rev. B 101, 214414 (2020).

ADS 

Google Scholar
 

Lambert, N. J., Haigh, J. A. & Ferguson, A. J. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity. J. Appl. Phys. 117, 053910 (2015).

ADS 

Google Scholar
 

Tabuchi, Y. et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014).

ADS 

Google Scholar
 

Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014).

ADS 

Google Scholar
 

Lachance-Quirion, D., Tabuchi, Y., Gloppe, A., Usami, K. & Nakamura, Y. Hybrid quantum systems based on magnonics. Appl. Phys. Express 12, 070101 (2019).

ADS 

Google Scholar
 

Zare Rameshti, B. et al. Cavity magnonics. Phys. Rep. 979, 1–61 (2022).

ADS 
MathSciNet 

Google Scholar
 

Tabuchi, Y. et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405 (2015).

ADS 
MathSciNet 

Google Scholar
 

Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425 (2020).

ADS 

Google Scholar
 

Lambert, N. J., Haigh, J. A., Langenfeld, S., Doherty, A. C. & Ferguson, A. J. Cavity-mediated coherent coupling of magnetic moments. Phys. Rev. A 93, 021803 (2016).

ADS 

Google Scholar
 

Wang, Y.-P. et al. Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123, 127202 (2019).

ADS 

Google Scholar
 

Zhang, X., Galda, A., Han, X., Jin, D. & Vinokur, V. M. Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl. 13, 044039 (2020).

ADS 

Google Scholar
 

Zhang, D., Luo, X.-Q., Wang, Y.-P., Li, T.-F. & You, J. Q. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun. 8, 1368 (2017).

ADS 

Google Scholar
 

Liu, H. et al. Observation of exceptional points in magnonic parity-time symmetry devices. Sci. Adv. 5, eaax9144 (2019).

ADS 

Google Scholar
 

Zhang, X., Ding, K., Zhou, X., Xu, J. & Jin, D. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019).

ADS 

Google Scholar
 

Cao, Y. & Yan, P. Exceptional magnetic sensitivity of 𝒫⁢𝒯-symmetric cavity magnon polaritons. Phys. Rev. B 99, 214415 (2019).

ADS 

Google Scholar
 

Harder, M., Yao, B. M., Gui, Y. S. & Hu, C.-M. Coherent and dissipative cavity magnonics. J. Appl. Phys. 129, 201101 (2021).

ADS 

Google Scholar
 

Hurst, H. M. & Flebus, B. Non-Hermitian physics in magnetic systems. J. Appl. Phys. 132, 220902 (2022).

ADS 

Google Scholar
 

Qian, J. et al. Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics. Nat. Commun. 14, 3437 (2023).

ADS 

Google Scholar
 

Wang, C. et al. Enhancement of magnonic frequency combs by exceptional points. Nat. Phys. 20, 1139 (2024).


Google Scholar
 

Vitanov, N. V., Rangelov, A. A., Shore, B. W. & Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017).

ADS 

Google Scholar
 

Xu, J. et al. Floquet cavity electromagnonics. Phys. Rev. Lett. 125, 237201 (2020).

ADS 

Google Scholar
 

Qi, S.-F & Jing, J. Floquet generation of a magnonic NOON state. Phys. Rev. A 107, 013702 (2023).

ADS 

Google Scholar
 

Yang, Y., Xiao, Y. & Hu, C.-M. Theory of Floquet-driven dissipative cavity magnonics. Phys. Rev. B 107, 054413 (2023).

ADS 

Google Scholar
 

Zhang, F.-Y., Wu, Q.-C. & Yang, C.-P. Non-Hermitian shortcut to adiabaticity in Floquet cavity electromagnonics. Phys. Rev. A 106, 012609 (2022).

ADS 

Google Scholar
 

Zhu, X., Xia, R. & Xu, L. Floquet-engineering magnonic NOON states with performance improved by soft quantum control. Quantum Inf. Process. 22, 454 (2023).

ADS 
MathSciNet 

Google Scholar
 

El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018).


Google Scholar
 

Özdemir, S. K., Rotter, S., Nori, F. & Yang, L. Parity-time symmetry and exceptional points in photonics. Nat. Mater. 18, 783 (2019).

ADS 

Google Scholar
 

Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014).


Google Scholar
 

Dietz, B. et al. Rabi oscillations at exceptional points in microwave billiards. Phys. Rev. E 75, 027201 (2007).

ADS 

Google Scholar
 

Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76 (2016).

ADS 

Google Scholar
 

Partanen, M. et al. Exceptional points in tunable superconducting resonators. Phys. Rev. B 100, 134505 (2019).

ADS 

Google Scholar
 

Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80 (2016).

ADS 

Google Scholar
 

Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479 (2018).

ADS 

Google Scholar
 

Stehmann, T., Heiss, W. D. & Scholtz, F. G. Observation of exceptional points in electronic circuits. J. Phys. A 37, 7813 (2004).

ADS 
MathSciNet 

Google Scholar
 

Choi, Y., Hahn, C., Yoon, J. W. & Song, S. H. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nat. Commun. 9, 2182 (2018).

ADS 

Google Scholar
 

Choi, Y., Yoon, J. W., Hong, J. K., Ryu, Y. & Song, S. H. Direct observation of time-asymmetric breakdown of the standard adiabaticity around an exceptional point. Commun. Phys. 3, 1 (2020).


Google Scholar
 

Yoon, J. W. et al. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature 562, 86 (2018).

ADS 

Google Scholar
 

Feilhauer, J. et al. Encircling exceptional points as a non-Hermitian extension of rapid adiabatic passage. Phys. Rev. A 102, 040201 (2020).

ADS 

Google Scholar
 

Jiang, X. et al. Coherent control of chaotic optical microcavity with reflectionless scattering modes. Nat. Phys. 20, 109–115 (2024).


Google Scholar
 

Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884 (2022).

ADS 

Google Scholar
 

Ergoktas, M. S. et al. Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science 376, 184 (2022).

ADS 

Google Scholar
 

Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59 (2021).

ADS 

Google Scholar
 

Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271 (2022).

ADS 

Google Scholar
 

Rao, Z. et al. Braiding reflectionless states in non-Hermitian magnonics. Nat. Phys. 20, 1904 (2024).


Google Scholar
 

Morris, R. G. E., van Loo, A. F., Kosen, S. & Karenowska, A. D. Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit. Sci. Rep. 7, 11511 (2017).

ADS 

Google Scholar
 

Walker, L. R. Magnetostatic modes in ferromagnetic resonance. Phys. Rev. 105, 390 (1957).

ADS 

Google Scholar
 

Fletcher, P., Solt, I. H. & Bell, R. Identification of the magnetostatic modes of ferrimagnetic resonant spheres. Phys. Rev. 114, 739 (1959).

ADS 

Google Scholar
 

Harder, M. et al. Level attraction due to dissipative magnon-photon coupling. Phys. Rev. Lett. 121, 137203 (2018).

ADS 

Google Scholar
 

Gilary, I., Mailybaev, A. A. & Moiseyev, N. Time-asymmetric quantum-state-exchange mechanism. Phys. Rev. A 88, 010102 (2013).

ADS 

Google Scholar
 

Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A 44, 435302 (2011).

ADS 
MathSciNet 
MATH 

Google Scholar
 

Nasari, H. et al. Observation of chiral state transfer without encircling an exceptional point. Nature 605, 256 (2022).

ADS 

Google Scholar
 

Hassan, A. U. et al. Chiral state conversion without encircling an exceptional point. Phys. Rev. A 96, 052129 (2017).

ADS 

Google Scholar
 

Znojil, M. Passage through exceptional point: case study. Proc. Math. Phys. Eng. Sci. 476, 20190831 (2020).

MathSciNet 
MATH 

Google Scholar
 

Lambert, N. J., Schumer, A., Longdell, J. J., Rotter, S. & Schwefel, H. G. L. Data for figures in ‘Coherent control of magnon-polaritons using an exceptional point’. Zenodo https://doi.org/10.5281/zenodo.15756785 (2025).