Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

ADS 
CAS 

Google Scholar
 

Bohrdt, A., Homeier, L., Reinmoser, C., Demler, E. & Grusdt, F. Exploration of doped quantum magnets with ultracold atoms. Ann. Phys. 435, 168651 (2021).

MathSciNet 
CAS 

Google Scholar
 

Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 1994).

Carroll, A. N. et al. Observation of generalized t-J spin dynamics with tunable dipolar interactions. Science 388, 381–386 (2025).

MathSciNet 
CAS 
PubMed 

Google Scholar
 

Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

ADS 
PubMed 

Google Scholar
 

Qin, M. et al. Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020).

CAS 

Google Scholar
 

Jiang, H.-C. & Devereaux, T. P. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t′. Science 365, 1424–1428 (2019).

ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Jiang, Y.-F., Devereaux, T. P. & Jiang, H.-C. Ground-state phase diagram and superconductivity of the doped Hubbard model on six-leg square cylinders. Phys. Rev. B 109, 085121 (2024).

ADS 
CAS 

Google Scholar
 

Xu, H. et al. Coexistence of superconductivity with partially filled stripes in the Hubbard model. Science 384, eadh7691 (2024).

MathSciNet 
CAS 
PubMed 

Google Scholar
 

Bespalova, T. A., Delić, K., Pupillo, G., Tacchino, F. & Tavernelli, I. Simulating the Fermi-Hubbard model with long-range hopping on a quantum computer. Phys. Rev. A 111, 052619 (2025).

MathSciNet 
CAS 

Google Scholar
 

Bohrdt, A. et al. Microscopy of bosonic charge carriers in staggered magnetic fields. Preprint at https://arxiv.org/abs/2410.19500 (2024).

Homeier, L. et al. Antiferromagnetic bosonic t–J models and their quantum simulation in tweezer arrays. Phys. Rev. Lett. 132, 230401 (2024).

ADS 
CAS 
PubMed 

Google Scholar
 

Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

CAS 

Google Scholar
 

Mögerle, J. et al. Spin-1 haldane phase in a chain of Rydberg atoms. PRX Quantum 6, 020332 (2025).


Google Scholar
 

Liu, V. S. et al. Supersolidity and simplex phases in spin-1 Rydberg atom arrays. Preprint at https://arxiv.org/abs/2407.17554 (2024).

Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

ADS 
CAS 

Google Scholar
 

Proust, C. & Taillefer, L. The remarkable underlying ground states of cuprate superconductors. Annu. Rev. Condens. Matter Phys. 10, 409–429 (2019).

ADS 
CAS 

Google Scholar
 

Bednorz, J. G. & Müller, K. A. Possible highTc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condensed Matter 64, 189–193 (1986).

ADS 
CAS 

Google Scholar
 

Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

ADS 
CAS 
PubMed 

Google Scholar
 

Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

ADS 
CAS 

Google Scholar
 

Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).

ADS 
CAS 
PubMed 

Google Scholar
 

Shao, H.-J. et al. Antiferromagnetic phase transition in a 3D fermionic Hubbard model. Nature 632, 267–272 (2024).

CAS 
PubMed 

Google Scholar
 

Hirthe, S. et al. Magnetically mediated hole pairing in fermionic ladders of ultracold atoms. Nature 613, 463–467 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lebrat, M. et al. Observation of Nagaoka polarons in a Fermi–Hubbard quantum simulator. Nature 629, 317–322 (2024).

ADS 
CAS 
PubMed 

Google Scholar
 

Prichard, M. L. et al. Directly imaging spin polarons in a kinetically frustrated Hubbard system. Nature 629, 323–328 (2024).

ADS 
CAS 
PubMed 

Google Scholar
 

Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

ADS 
PubMed 

Google Scholar
 

Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

ADS 
CAS 
PubMed 

Google Scholar
 

Emery, V. J., Kivelson, S. A. & Lin, H. Q. Phase separation in the t-J model. Phys. Rev. Lett. 64, 475 (1990).

ADS 
CAS 
PubMed 

Google Scholar
 

Boninsegni, M. Phase separation in mixtures of hard core bosons. Phys. Rev. Lett. 87, 087201 (2001).

ADS 
CAS 
PubMed 

Google Scholar
 

Sun, H. et al. Realization of a bosonic antiferromagnet. Nat. Phys. 17, 990–994 (2021).

CAS 

Google Scholar
 

Jepsen, P. N. et al. Transverse spin dynamics in the anisotropic Heisenberg model realized with ultracold atoms. Phys. Rev. X 11, 041054 (2021).

CAS 

Google Scholar
 

Harris, T. J., Schollwöck, U., Bohrdt, A. & Grusdt, F. Kinetic magnetism and stripe order in the doped AFM bosonic t–J model. Preprint at https://arxiv.org/abs/2410.00904v1 (2024).

Zhang, H.-K., Zhang, J.-X., Xu, J.-S. & Weng, Z.-Y. Quantum-interference-induced pairing in antiferromagnetic bosonic t-J model. Preprint at https://arxiv.org/abs/2409.15424 (2024).

Siller, T., Troyer, M., Rice, T. M. & White, S. R. Bosonic model of hole pairs. Phys. Rev. B 63, 195106 (2001).

ADS 

Google Scholar
 

O’Mahony, S. M. et al. On the electron pairing mechanism of copper-oxide high temperature superconductivity. Proc. Natl. Acad. Sci. 119, e2207449119 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Morera, I., Bohrdt, A., Ho, W. W. & Demler, E. Attraction from kinetic frustration in ladder systems. Phys. Rev. Res. 6, 023196 (2024).

CAS 

Google Scholar
 

Sous, J. & Pretko, M. Fractons from polarons. Phys. Rev. B 102, 214437 (2020).

ADS 
CAS 

Google Scholar
 

Barredo, D. et al. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015).

ADS 
PubMed 

Google Scholar
 

Emperauger, G. et al. Benchmarking direct and indirect dipolar spin-exchange interactions between two Rydberg atoms. Phys. Rev. A 111, 062806 (2025).

CAS 

Google Scholar
 

Wadenpfuhl, K. & Adams, C. S. Unravelling the structures in the van der Waals interactions of alkali Rydberg atoms. Phys. Rev. A 111, 062803 (2025).

Winkler, K. et al. Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006).

ADS 
CAS 
PubMed 

Google Scholar
 

Staszewski, L. & Wietek, A. Quench dynamics of stripes and phase separation in the two-dimensional t-J model. Phys. Rev. B 112, 035125 (2025).


Google Scholar
 

White, S. R. & Scalapino, D. J. Phase separation and stripe formation in the two-dimensional t–J model: a comparison of numerical results. Phys. Rev. B 61, 6320 (2000).

ADS 
CAS 

Google Scholar
 

Kagan, M. Y., Kugel, K. I. & Rakhmanov, A. L. Electronic phase separation: recent progress in the old problem. Phys. Rep. 916, 1–105 (2021).

ADS 
CAS 

Google Scholar
 

Ji, G. et al. Coupling a mobile hole to an antiferromagnetic spin background: transient dynamics of a magnetic polaron. Phys. Rev. X 11, 021022 (2021).

CAS 

Google Scholar
 

Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691–695 (2023).

ADS 
CAS 
PubMed 

Google Scholar
 

Weber, S. et al. Tutorial: Calculation of Rydberg interaction potentials. J. Phys. B: At. Mol. Opt. Phys. 50, 133001 (2017).

ADS 

Google Scholar
 

Marder, M., Papanicolaou, N. & Psaltakis, G. C. Phase separation in a t-J model. Phys. Rev. B 41, 6920 (1990).

ADS 
CAS 

Google Scholar
 

Bobroff, J. et al. Absence of static phase separation in the high Tc cuprate YBa2Cu3O6+y. Phys. Rev. Lett. 89, 157002 (2002).

ADS 
CAS 
PubMed 

Google Scholar
 

Daley, A. J. Quantum trajectories and open many-body quantum systems. Adv. Phys. 63, 77–149 (2014).

ADS 
CAS 

Google Scholar
 

Hauschild, J. et al. Tensor network Python. Code available at https://github.com/tenpy/tenpy/. Documentation available at https://tenpy.readthedocs.io/en/latest/ (2018).

Hauschild, J. & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes https://doi.org/10.21468/scipostphyslectnotes.5 (2018).