Oyakhire, S. T., Gong, H., Cui, Y., Bao, Z. & Bent, S. F. An X-ray photoelectron spectroscopy primer for solid electrolyte interphase characterization in lithium metal anodes. ACS Energy Lett. 7, 2540–2546 (2022).

CAS 

Google Scholar
 

Yu, W., Yu, Z., Cui, Y. & Bao, Z. Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7, 3270–3275 (2022).

CAS 

Google Scholar
 

Bard, A. J. et al. ChemInform Abstract: the electrode/electrolyte interface – a status report. J. Phys. Chem. 97, 7147–7173 (1993).

CAS 

Google Scholar
 

Yu, X. & Manthiram, A. Electrode-electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 11, 527–543 (2018).

CAS 

Google Scholar
 

Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

ADS 
CAS 

Google Scholar
 

Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

ADS 
CAS 
PubMed 

Google Scholar
 

Li, Y., Leung, K. & Qi, Y. Computational exploration of the Li-electrode|electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer. Acc. Chem. Res. 49, 2363–2370 (2016).

CAS 
PubMed 

Google Scholar
 

Winter, M. The solid electrolyte interphase – the most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem. 223, 1395–1406 (2009).

CAS 

Google Scholar
 

Dedryvère, R. et al. XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode. J. Electrochem. Soc. 152, A689 (2005).


Google Scholar
 

Kanamura, K., Tamura, H., Shiraishi, S. & Takehara, Z.-I. XPS analysis for the lithium surface immersed in γ-butyrolactone containing various salts. J. Electrochem. Soc. 40, 913–921 (1995).

CAS 

Google Scholar
 

Andersson, A. M. & Edström, K. Chemical composition and morphology of the elevated temperature SEI on graphite. J. Electrochem. Soc. 148, A1100 (2001).

CAS 

Google Scholar
 

Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

ADS 
CAS 
PubMed 

Google Scholar
 

Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).

ADS 
CAS 

Google Scholar
 

Steinrück, H. G. et al. Interfacial speciation determines interfacial chemistry: X-ray-induced lithium fluoride formation from water-in-salt electrolytes on solid surfaces. Angew. Chem. Int. Ed. 59, 23180–23187 (2020).


Google Scholar
 

Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

ADS 
CAS 
PubMed 

Google Scholar
 

Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

ADS 
CAS 
PubMed 

Google Scholar
 

Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, Z. et al. Cryogenic electron microscopy for energy materials. Acc. Chem. Res. 54, 3505–3517 (2021).

CAS 
PubMed 

Google Scholar
 

Bai, X., McMullan, G. & Scheres, S. H. W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci 40, 49–57 (2015).

CAS 
PubMed 

Google Scholar
 

Dubochet, J. On the development of electron cryo-microscopy (Nobel Lecture). Angew. Chem. Int. Ed. 130, 10842–10846 (2018).


Google Scholar
 

Henderson, R. From electron crystallography to single particle CryoEM (Nobel Lecture). Angew. Chem. Int. Ed. 130, 10804–10825 (2018).


Google Scholar
 

Taylor, K. A. & Glaeser, R. M. Electron diffraction of frozen, hydrated protein crystals. Science 186, 1036–1037 (1974).

ADS 
CAS 
PubMed 

Google Scholar
 

McDowall, A. W. et al. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131, 1–9 (1983).

CAS 
PubMed 

Google Scholar
 

Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19, 147–178 (1986).

CAS 

Google Scholar
 

Fernandez-Moran, H. Cell-membrane ultrastructure: low-temperature electron microscopy and X-ray diffraction studies of lipoprotein components in lamellar systems. Circulation 26, 1039–1065 (1962).

CAS 
PubMed 

Google Scholar
 

Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

CAS 

Google Scholar
 

Li, T., Zhang, X.-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).

CAS 

Google Scholar
 

Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating Interphases. J. Electrochem. Soc. 166, A5184–A5186 (2019).

CAS 

Google Scholar
 

Hobold, G. M., Wang, C., Steinberg, K., Li, Y. & Gallant, B. M. High lithium oxide prevalence in the lithium solid–electrolyte interphase for high Coulombic efficiency. Nat. Energy 9, 580–591 (2024).

ADS 
CAS 

Google Scholar
 

Kim, M. S. et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21, 445–454 (2022).

ADS 
CAS 
PubMed 

Google Scholar
 

Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

ADS 
CAS 
PubMed 

Google Scholar
 

Arkel, A. E., Spitsbergen, U. & Heyding, R. D. Note on the volatility of lithium oxide. Can. J. Chem. 33, 446–447 (1955).

ADS 

Google Scholar
 

Kudo, H., Wu, C. H. & Ihle, H. R. Mass-spectrometric study of the vaporization of Li2O(s) and thermochemistry of gaseous LiO, Li2O, Li3O, and Li2O2. J. Nucl. Mater. 78, 380–389 (1978).

ADS 
CAS 

Google Scholar
 

Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979).

CAS 

Google Scholar
 

D’Acunto, G. et al. Atomic layer deposition of hafnium oxide on InAs: insight from time-resolved in situ studies. ACS Appl. Electron Mater 2, 3915–3922 (2020).


Google Scholar
 

Walther, T. in Microscopy Methods in Nanomaterials Characterization 105–134 (Elsevier, 2017).

García De Abajo, F. J. & Di Giulio, V. Optical excitations with electron beams: challenges and opportunities. ACS Photon. 8, 945–974 (2021).


Google Scholar
 

Jagger, B. & Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023).

CAS 

Google Scholar
 

He, M., Guo, R., Hobold, G. M., Gao, H. & Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, M. S. et al. Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 17, 3168–3180 (2023).

CAS 
PubMed 

Google Scholar
 

Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101 (1904).


Google Scholar
 

Oyakhire, S. T. et al. Proximity matters: interfacial solvation dictates solid electrolyte interphase composition. Nano Lett. 23, 7524–7531 (2023).

ADS 
CAS 
PubMed 

Google Scholar
 

Oyakhire, S. T. & Bent, S. F. Interfacial engineering of lithium metal anodes: what is left to uncover? Energy Adv. 3, 108–122 (2023).


Google Scholar
 

Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

ADS 
CAS 

Google Scholar
 

Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208 (1997).

CAS 

Google Scholar
 

Cui, Z. et al. Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries. Nat. Commun. 15, 2033 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, W. et al. Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024).

ADS 
CAS 
PubMed 

Google Scholar
 

Otto, S.-K. et al. In-depth characterization of lithium-metal surfaces with XPS and ToF-SIMS: toward better understanding of the passivation layer. Chem. Mater. 33, 859–867 (2021).

ADS 
CAS 

Google Scholar
 

Baer, D. R. XPS guide: charge neutralization and binding energy referencing for insulating samples. J. Vac. Sci. Technol. A 38, 031204 (2020).

CAS 

Google Scholar
 

Greczynski, G. & Hultman, L. Compromising science by ignorant instrument calibration—need to revisit half a century of published XPS data. Angew. Chem. Int. Ed. 59, 5002–5006 (2020).

CAS 

Google Scholar
 

Liu, Q. et al. A fluorinated cation introduces new interphasial chemistries to enable high-voltage lithium metal batteries. Nat. Commun. 14, 3678 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ge, S. et al. High safety and cycling stability of ultrahigh energy lithium ion batteries. Cell Rep. Phys. Sci. 2, 100584 (2021).

CAS 

Google Scholar
 

Wood, K. N. & Teeter, G. XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater. 1, 4493–4504 (2018).

CAS 

Google Scholar
 

Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017).

PubMed 

Google Scholar
 

Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

CAS 

Google Scholar
 

Templeton, D. M. et al. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC recommendations 2000). Pure Appl. Chem. 72, 1453–1470 (2009).


Google Scholar
 

Feldmann, J. et al. Microwave-assisted sample preparation for element speciation. in Microwave-Assisted Sample Preparation for Trace Element Determination 281–312 (Elsevier, 2014).

Greczynski, G. & Hultman, L. Towards reliable X-ray photoelectron spectroscopy: sputter-damage effects in transition metal borides, carbides, nitrides, and oxides. Appl. Surf. Sci. 542, 148599 (2021).

CAS 

Google Scholar
Â