Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

Article 

Google Scholar
 

Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).

Article 

Google Scholar
 

Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

Article 
PubMed 

Google Scholar
 

Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325 (2003).

Article 

Google Scholar
 

Holzwarth, R., Udem, T. & Hänsch, T. W. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000).

Article 
PubMed 

Google Scholar
 

Suh, M. G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

Article 
PubMed 

Google Scholar
 

Niu, R. et al. kHz-precision wavemeter based on reconfigurable microsoliton. Nat. Commun. 14, 169 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

de Jong, M. H. J., Ganesan, A., Cupertino, A., Gröblacher, S. & Norte, R. A. Mechanical overtone frequency combs. Nat. Commun. 14, 1458 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Qi, Z., Menyuk, C. R., Gorman, J. J. & Ganesan, A. Existence conditions for phononic frequency combs. Appl. Phys. Lett. 117, 183503 (2020).

Article 

Google Scholar
 

Erbe, A. et al. Mechanical mixing in nonlinear nanomechanical resonators. Appl. Phys. Lett. 77, 3102–3104 (2000).

Article 

Google Scholar
 

Cao, L. S., Qi, D. X., Peng, R. W., Wang, M. & Schmelcher, P. Phononic frequency combs through nonlinear resonances. Phys. Rev. Lett. 112, 075505 (2014).

Article 
PubMed 

Google Scholar
 

Ganesan, A., Do, C. & Seshia, A. Phononic frequency comb via intrinsic three-wave mixing. Phys. Rev. Lett. 118, 033903 (2017).

Article 
PubMed 

Google Scholar
 

Wu, J. et al. Widely-tunable MEMS phononic frequency combs by multistage bifurcations under a single-tone excitation. J. Microelectromech. Syst. 33, 384–394 (2024).

Article 

Google Scholar
 

Ganesan, A., Do, C. & Seshia, A. Excitation of coupled phononic frequency combs via two-mode parametric three-wave mixing. Phys. Rev. B 97, 014302 (2018).

Article 

Google Scholar
 

Ganesan, A., Do, C. & Seshia, A. Phononic frequency comb via three-mode parametric resonance. Appl. Phys. Lett. 112, 021906 (2018).

Article 

Google Scholar
 

Wang, X. et al. Frequency comb in a parametrically modulated micro-resonator. Acta Mech. Sin. 38, 521596 (2022).

Article 
MathSciNet 

Google Scholar
 

Ganesan, A., Do, C. & Seshia, A. Frequency transitions in phononic four-wave mixing. Appl. Phys. Lett. 111, 064101 (2017).

Article 

Google Scholar
 

Mouharrar, H. et al. Generation of soliton frequency combs in NEMS. Nano Lett. 24, 10834–10841 (2024).

Article 
PubMed 

Google Scholar
 

Czaplewski, D. A. et al. Bifurcation generated mechanical frequency comb. Phys. Rev. Lett. 121, 244302 (2018).

Article 
PubMed 

Google Scholar
 

Bhosale, K. S. & Li, S. Multi-harmonic phononic frequency comb generation in capacitive CMOS-MEMS resonators. Appl. Phys. Lett. 124, 163505 (2024).

Article 

Google Scholar
 

Wang, X. et al. Frequency comb in 1:3 internal resonance of coupled micromechanical resonators. Appl. Phys. Lett. 120, 173506 (2022).

Article 

Google Scholar
 

Li, Y., Luo, W., Zhao, Z. & Liu, D. Resonant excitation-induced nonlinear mode coupling in a microcantilever resonator. Phys. Rev. Appl. 17, 054015 (2022).

Article 

Google Scholar
 

Wu, S. et al. Hybridized frequency combs in multimode cavity electromechanical system. Phys. Rev. Lett. 128, 153901 (2022).

Article 
PubMed 

Google Scholar
 

Wang, Y. et al. Optomechanical frequency comb based on multiple nonlinear dynamics. Phys. Rev. Lett. 132, 163603 (2024).

Article 
PubMed 

Google Scholar
 

Hu, Y. et al. Generation of optical frequency comb via giant optomechanical oscillation. Phys. Rev. Lett. 127, 134301 (2021).

Article 
PubMed 

Google Scholar
 

Ng, R. C. et al. Intermodulation of optical frequency combs in a multimode optomechanical system. Phys. Rev. Res. 5, L032028 (2023).

Article 

Google Scholar
 

Navarro-Urrios, D. et al. Nonlinear dynamics and chaos in an optomechanical beam. Nat. Commun. 8, 14965 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

He, Y. et al. Coherent acoustic frequency comb via floquet engineering of optical tweezer phonon lasers. Sci. Adv. 11, eadv9984 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

Article 
PubMed 

Google Scholar
 

Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

Article 

Google Scholar
 

Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu, C., Yang, Z. & Lum, G. Z. Small-scale magnetic actuators with optimal six degrees-of-freedom. Adv. Mater. 33, 2100170 (2021).

Article 

Google Scholar
 

Xu, A.-N., Li, Y., Li, X., Liu, B. & Liu, Y.-C. Subpicotesla optomechanical magnetometry. Phys. Rev. Lett. 133, 153601 (2024).

Article 
PubMed 

Google Scholar
 

Singer, A. et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 107, 631–643 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thormählen, L. et al. Low-noise inverse magnetoelectric magnetic field sensor. Appl. Phys. Lett. 124, 172402 (2024).

Article 

Google Scholar
 

Ma, J., Hu, J., Li, Z. & Nan, C. W. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011).

Article 
PubMed 

Google Scholar
 

Luo, B. et al. Magnetoelectric microelectromechanical and nanoelectromechanical systems for the IoT. Nat. Rev. Electr. Eng. 1, 317–334 (2024).

Article 

Google Scholar
 

Li, B., Ou, L., Lei, Y. & Liu, Y. Cavity optomechanical sensing. Nanophotonics 10, 2799–2832 (2021).

Article 

Google Scholar
 

Yu, C. et al. Optomechanical magnetometry with a macroscopic resonator. Phys. Rev. Appl. 5, 044007 (2016).

Article 

Google Scholar
 

Xu, G.-T. et al. Magnonic frequency comb in the magnomechanical resonator. Phys. Rev. Lett. 131, 243601 (2023).

Article 
PubMed 

Google Scholar
 

Xiong, H. Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect. Fundam. Res. 3, 8–14 (2023).

Article 
PubMed 

Google Scholar
 

Zhai, J., Xing, Z., Dong, S., Li, J. & Viehland, D. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88, 062510 (2006).

Article 

Google Scholar
 

Meyer, H. G., Stolz, R., Chwala, A. & Schulz, M. SQUID technology for geophysical exploration. Phys. Stat. Sol. 2, 1504–1509 (2005).


Google Scholar
 

Xia, H., Ben-Amar Baranga, A., Hoffman, D. & Romalis, M. V. Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89, 211104 (2006).

Article 

Google Scholar
 

Maksymov, I. S., Huy Nguyen, B. Q., Pototsky, A. & Suslov, S. Acoustic, phononic, brillouin light scattering and faraday wave-based frequency combs: physical foundations and applications. Sensors 22, 3921 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu, H. et al. Precise underwater distance measurement by dual acoustic frequency combs. Ann. Phys. 531, 1900283 (2019).

Article 

Google Scholar
 

Chen, J. C. et al. Self-rectifying magnetoelectric metamaterials for remote neural stimulation and motor function restoration. Nat. Mater. 23, 139–146 (2024).

Article 
PubMed 

Google Scholar
 

Joy, B., Cai, Y., Bono, D. C. & Sarkar, D. Cell Rover-a miniaturized magnetostrictive antenna for wireless operation inside living cells. Nat. Commun. 13, 5210 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

Article 

Google Scholar
 

Yang, Q. et al. Asymmetric phononic frequency comb in a rhombic micromechanical resonator. Appl. Phys. Lett. 118, 223502 (2021).

Article 

Google Scholar
 

Nosek, J. Drive level dependence of the resonant frequency in BAW quartz resonators and his modeling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 823–829 (1999).

Article 
PubMed 

Google Scholar
 

Xian, D. et al. Highly magneto-electric-mechanical coupling effect in self-biased magnetoelectric composite induced by laser thermal annealing. Microsyst. Nanoeng. 11, 142 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hausch, G. & Török, E. Elastic, magnetoelastic, and thermal properties of some ferromagnetic metallic glasses. Phys. Status Solidi A 50, 159–164 (1978).

Article 

Google Scholar
 

Chu, Z. et al. Enhanced resonance magnetoelectric coupling in (1-1) connectivity composites. Adv. Mater. 29, 1606022 (2017).

Article 

Google Scholar
 

Chen, C. et al. Direct-current electrical detection of surface-acoustic-wave-driven ferromagnetic resonance. Adv. Mater. 35, 2302454 (2023).

Article 

Google Scholar
 

Wu, J. et al. Self-injection locked and phase offset-free micromechanical frequency combs. Phys. Rev. Lett. 134, 107201 (2025).

Article 
PubMed 

Google Scholar
 

Zhao, Z., Li, Y., Zhang, W., Luo, W. & Liu, D. Acoustic frequency comb generation on a composite diamond/silicon microcantilever in ambient air. Microsyst. Nanoeng. 11, 12 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Postma, H. W. C., Kozinsky, I., Husain, A. & Roukes, M. L. Dynamic range of nanotube- and nanowire-based electromechanical systems. Appl. Phys. Lett. 86, 223105 (2005).

Article 

Google Scholar
 

Kozinsky, I., Postma, H. W. C., Bargatin, I. & Roukes, M. L. Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88, 253101 (2006).

Article 

Google Scholar
 

Lin, Z., Guha Ray, P., Huang, J., Buchmann, P. & Fussenegger, M. Electromagnetic wireless remote control of mammalian transgene expression. Nat. Nanotechnol. 20, 1071–1078 (2025).

Chen, J. C. et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 6, 706–716 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

O’Reilly, M. A. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 385, eadp7206 (2024).

Article 
PubMed 

Google Scholar
 

Wang, W. et al. Ultrasound-activated piezoelectric nanostickers for neural stem cell therapy of traumatic brain injury. Nat. Mater. 24, 1137–1150 (2025).

Article 
PubMed 

Google Scholar