Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540 (2020).

Article 
ADS 

Google Scholar
 

Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

Article 
ADS 

Google Scholar
 

Liu, W. et al. Coherent dynamics of multi-spin \({\rm V_{\rm{B}}^{-}}\) center in hexagonal boron nitride. Nat. Commun. 13, 5713 (2022).

Article 
ADS 

Google Scholar
 

Gao, X. et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 21, 1024 (2022).

Article 
ADS 

Google Scholar
 

Gong, R. et al. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. Nat. Commun. 14, 3299 (2023).

Article 
ADS 

Google Scholar
 

Healey, A. et al. Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87 (2023).

Article 

Google Scholar
 

Ramsay, A. J. et al. Coherence protection of spin qubits in hexagonal boron nitride. Nat. Commun. 14, 461 (2023).

Article 
ADS 

Google Scholar
 

Rizzato, R. et al. Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing. Nat. Commun. 14, 5089 (2023).

Article 
ADS 

Google Scholar
 

Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38 (2018).

Article 
ADS 

Google Scholar
 

Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906 (2021).

Article 
ADS 

Google Scholar
 

Durand, A. et al. Optically active spin defects in few-layer thick hexagonal boron nitride. Phys. Rev. Lett. 131, 116902 (2023).

Article 
ADS 

Google Scholar
 

Robertson, I. O. et al. Detection of paramagnetic spins with an ultrathin van der Waals quantum sensor. ACS Nano 17, 13408 (2023).

Article 

Google Scholar
 

Gao, X. et al. Quantum sensing of paramagnetic spins in liquids with spin qubits in hexagonal boron nitride. ACS Photonics 10, 2894 (2023).

Article 

Google Scholar
 

Zhou, J. et al. Sensing spin wave excitations by spin defects in few-layer-thick hexagonal boron nitride. Sci. Adv. 10, eadk8495 (2024).

Article 

Google Scholar
 

Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405 (2018).

Article 

Google Scholar
 

Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836 (2023).

Article 

Google Scholar
 

Ivády, V. et al. Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride. npj Comput. Mater. 6, 41 (2020).

Article 
ADS 

Google Scholar
 

Reimers, J. R. et al. Photoluminescence, photophysics, and photochemistry of the \({\rm V_{\rm{B}}^{-}}\) defect in hexagonal boron nitride. Phys. Rev. B 102, 144105 (2020).

Article 
ADS 

Google Scholar
 

Kianinia, M., White, S., Fröch, J. E., Bradac, C. & Aharonovich, I. Generation of spin defects in hexagonal boron nitride. ACS Photonics 7, 2147 (2020).

Article 

Google Scholar
 

Gao, X. et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21, 7708 (2021).

Article 
ADS 

Google Scholar
 

Liu, W. et al. Temperature-dependent energy-level shifts of spin defects in hexagonal boron nitride. ACS Photonics 8, 1889 (2021).

Article 

Google Scholar
 

Mathur, N. et al. Excited-state spin-resonance spectroscopy of \({\rm V_{\rm{B}}^{-}}\) defect centers in hexagonal boron nitride. Nat. Commun. 13, 3233 (2022).

Article 
ADS 

Google Scholar
 

Haykal, A. et al. Decoherence of \({\rm V_{\rm{B}}^{-}}\) spin defects in monoisotopic hexagonal boron nitride. Nat. Commun. 13, 4347 (2022).

Article 
ADS 

Google Scholar
 

Mendelson, N. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321 (2021).

Article 
ADS 

Google Scholar
 

Chejanovsky, N. et al. Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079 (2021).

Article 
ADS 

Google Scholar
 

Stern, H. L. et al. Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022).

Article 
ADS 

Google Scholar
 

Guo, N.-J. et al. Coherent control of an ultrabright single spin in hexagonal boron nitride at room temperature. Nat. Commun. 14, 2893 (2023).

Article 
ADS 

Google Scholar
 

Yang, Y.-Z. et al. Laser direct writing of visible spin defects in hexagonal boron nitride for applications in spin-based technologies. ACS Appl. Nano Mater. 6, 6407 (2023).

Article 

Google Scholar
 

Scholten, S. C. et al. Multi-species optically addressable spin defects in a van der Waals material. Nat. Commun. 15, 6727 (2024).

Article 

Google Scholar
 

Patel, R. N. et al. Room temperature dynamics of an optically addressable single spin in hexagonal boron nitride. Nano Lett. 24, 7623 (2024).

Article 
ADS 

Google Scholar
 

Singh, P. et al. Violet to near-infrared optical addressing of spin pairs in hexagonal boron nitride. Adv. Mater. 37, 2414846 (2025).

Article 

Google Scholar
 

Auburger, P. & Gali, A. Towards ab initio identification of paramagnetic substitutional carbon defects in hexagonal boron nitride acting as quantum bits. Phys. Rev. B 104, 075410 (2021).

Article 
ADS 

Google Scholar
 

Pinilla, F. et al. Spin-active single photon emitters in hexagonal boron nitride from carbon-based defects. Phys. Scr. 98, 095505 (2023).

Article 
ADS 

Google Scholar
 

Golami, O. et al. Ab initio and group theoretical study of properties of a carbon trimer defect in hexagonal boron nitride. Phys. Rev. B 105, 184101 (2022).

Article 
ADS 

Google Scholar
 

Tan, Q. et al. Donor-acceptor pair quantum emitters in hexagonal boron nitride. Nano Lett. 22, 1331 (2022).

Article 
ADS 

Google Scholar
 

Benedek, Z. et al. Symmetric carbon tetramers forming spin qubits in hexagonal boron nitride. npj Comput. Mater. 9, 187 (2023).

Article 
ADS 

Google Scholar
 

Hunter, D., Hoff, A. & Hore, P. Theoretical calculations of RYDMR effects in photosynthetic bacteria. Chem. Phys. Lett. 134, 6 (1987).

Article 
ADS 

Google Scholar
 

Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51 (1989).

Article 

Google Scholar
 

Woodward, J. R. Radical pairs in solution. Prog. React. Kinet. Mech. 27, 165 (2002).

Article 

Google Scholar
 

Evans, E. W. et al. Magnetic field effects in flavoproteins and related systems. Interface Focus 3, 20130037 (2013).

Article 

Google Scholar
 

Luo, J., Geng, Y., Rana, F. & Fuchs, G. D. Room temperature optically detected magnetic resonance of single spins in GaN. Nat. Mater. 23, 512 (2024).

Article 
ADS 

Google Scholar
 

McCamey, D. R. et al. Hyperfine-field-mediated spin beating in electrostatically bound charge carrier pairs. Phys. Rev. Lett. 104, 017601 (2010).

Article 
ADS 

Google Scholar
 

Lee, S.-Y. et al. Tuning hyperfine fields in conjugated polymers for coherent organic spintronics. J. Am. Chem. Soc. 133, 2019 (2011).

Article 
ADS 

Google Scholar
 

Kosugi, N., Matsuo, S., Konno, K. & Hatakenaka, N. Theory of damped Rabi oscillations. Phys. Rev. B 72, 172509 (2005).

Article 
ADS 

Google Scholar
 

Davies, J. Optically-detected magnetic resonance studies of II-VI compounds. J. Cryst. Growth 86, 599 (1988).

Article 
ADS 

Google Scholar
 

Boehme, C. & Lips, K. Theory of time-domain measurement of spin-dependent recombination with pulsed electrically detected magnetic resonance. Phys. Rev. B 68, 245105 (2003).

Article 
ADS 

Google Scholar
 

Dean, P. Inter-impurity recombinations in semiconductors. Prog. Solid State Chem. 8, 1–126 (1973).

Article 

Google Scholar
 

Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37 (2016).

Article 
ADS 

Google Scholar
 

Kumar, A. et al. Localized creation of yellow single photon emitting carbon complexes in hexagonal boron nitride. APL Mater. 11, 071108 (2023).

Article 
ADS 

Google Scholar
 

Pelliciari, J. et al. Elementary excitations of single-photon emitters in hexagonal boron nitride. Nat. Mater. 23, 1230–1236 (2024).

Article 
ADS 

Google Scholar
 

Liu, W. et al. Experimental observation of spin defects in van der Waals material GeS2. Preprint at https://arxiv.org/abs/2410.18892 (2024).

Stern, H. L. et al. A quantum coherent spin in hexagonal boron nitride at ambient conditions. Nat. Mater. 23, 1379–1385 (2024).

Article 
ADS 

Google Scholar
 

Gao, X. et al. Single nuclear spin detection and control in a van der Waals material. Nature 643, 943–949 (2025).

Article 
ADS 

Google Scholar
 

Onodera, M. et al. Carbon-rich domain in hexagonal boron nitride: carrier mobility degradation and anomalous bending of the Landau fan diagram in adjacent graphene. Nano Lett. 19, 7282 (2019).

Article 
ADS 

Google Scholar
 

Jara, C. et al. First-principles identification of single photon emitters based on carbon clusters in hexagonal boron nitride. J. Phys. Chem. A 125, 1325 (2021).

Article 

Google Scholar
 

Linderälv, C., Wieczorek, W. & Erhart, P. Vibrational signatures for the identification of single-photon emitters in hexagonal boron nitride. Phys. Rev. B 103, 115421 (2021).

Article 
ADS 

Google Scholar
 

Lillie, S. E. et al. Laser modulation of superconductivity in a cryogenic wide-field nitrogen-vacancy microscope. Nano Lett. 20, 1855 (2020).

Article 
ADS 

Google Scholar
 

Bluvstein, D., Zhang, Z. & Jayich, A. C. B. Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers. Phys. Rev. Lett. 122, 076101 (2019).

Article 
ADS 

Google Scholar
 

Johnston, D. C. Stretched exponential relaxation arising from a continuous sum of exponential decays. Phys. Rev. B 74, 184430 (2006).

Article 
ADS 

Google Scholar
 

Campaioli, F., Cole, J. H. & Hapuarachchi, H. Quantum master equations: tips and tricks for quantum optics, quantum computing, and beyond. PRX Quantum 5, 020202 (2024).

Article 
ADS 

Google Scholar
 

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

Article 
ADS 

Google Scholar
 

Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

Article 
ADS 

Google Scholar
 

Weston, L., Wickramaratne, D., Mackoit, M., Alkauskas, A. & Van de Walle, C. G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97, 214104 (2018).

Article 
ADS 

Google Scholar
 

Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011).

Article 
ADS 

Google Scholar
 

Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

Article 

Google Scholar
 

Jones, R. O. & Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689 (1989).

Article 
ADS 

Google Scholar
 

Szász, K., Hornos, T., Marsman, M. & Gali, A. Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: the role of core spin polarization. Phys. Rev. B 88, 075202 (2013).

Article 
ADS 

Google Scholar
 

Runge, E. & Gross, E. K. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984).

Article 
ADS 

Google Scholar
 

Casida, M. E. in Recent Advances in Density Functional Methods, Part I (ed. Chong, D. P.) 155–192 (World Scientific, 1995).

Dreuw, A. & Head-Gordon, M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105, 4009 (2005).

Article 

Google Scholar
 

Neese, F. Software update: the ORCA program system–version 5.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 12, e1606 (2022).


Google Scholar
 

Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005).

Article 

Google Scholar
 

Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996).

Article 
ADS 

Google Scholar
 

Benedek, Z., Ganyecz, Á., Pershin, A., Ivády, V. & Barcza, G. Accurate and convergent energetics of color centers by wavefunction theory. Preprint at https://arxiv.org/abs/2406.05092 (2024).