Thompson, D. W. J. & Wallace, J. M. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Clim. 13, 1000–1016 (2000).

Article 

Google Scholar
 

Rogers, J. C. & Loon, H. van Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Weather Rev. 110, 1375–1392 (1982).

Article 

Google Scholar
 

Gong, D. & Wang, S. Definition of Antarctic oscillation index. Geophys. Res. Lett. 26, 459–462 (1999).

Article 

Google Scholar
 

Marshall Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

Article 

Google Scholar
 

Hartmann, D. L. & Lo, F. Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci. 55, 1303–1315 (1998).

Article 

Google Scholar
 

Ho, M., Kiem, A. S. & Verdon-Kidd, D. C. The Southern Annular Mode: a comparison of indices. Hydrol. Earth Syst. Sci. 16, 967–982 (2012).

Article 

Google Scholar
 

Wright, N. M., Krause, C. E., Phipps, S. J., Boschat, G. & Abram, N. J. Influence of long-term changes in solar irradiance forcing on the Southern Annular Mode. Clim. Past 18, 1509–1528 (2022).

Article 

Google Scholar
 

Velasquez-Jimenez, L. & Abram, N. J. Technical note: an improved methodology for calculating the Southern Annular Mode index to aid consistency between climate studies. Clim. Past 20, 1125–1139 (2024).

Article 

Google Scholar
 

Lim, E.-P. et al. The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. Bull. Am. Meteorol. Soc. 102, E1150–E1171 (2021).

Article 

Google Scholar
 

Lim, E.-P. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).

Article 
CAS 

Google Scholar
 

Harris, S. & Lucas, C. Understanding the variability of Australian fire weather between 1973 and 2017. PLoS ONE 14, e0222328 (2019).

Article 
CAS 

Google Scholar
 

Lenaerts, J. T. M., Fyke, J. & Medley, B. The Ssgnature of ozone depletion in recent antarctic precipitation change: a study with the community earth system model. Geophys. Res. Lett. 45, 12,931–12,939 (2018).

Article 
CAS 

Google Scholar
 

Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim. Change 11, e652 (2020).

Article 

Google Scholar
 

IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023).

Nakamura, H. & Shimpo, A. Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Clim. 17, 1828–1844 (2004).

Article 

Google Scholar
 

Lorenz, D. J. & Hartmann, D. L. Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci. 58, 3312–3327 (2001).

Article 

Google Scholar
 

Hendon, H. H., Lim, E.-P. & Nguyen, H. Seasonal variations of subtropical precipitation associated with the Southern Annular Mode. J. Clim. 27, 3446–3460 (2014).

Article 

Google Scholar
 

Codron, F. Relations between annular modes and the mean state: Southern Hemisphere winter. J. Atmos. Sci. 64, 3328–3339 (2007).

Article 

Google Scholar
 

Barnes, E. A. & Hartmann, D. L. Dynamical feedbacks of the Southern Annular Mode in winter and summer. J. Atmos. Sci. 67, 2320–2330 (2010).

Article 

Google Scholar
 

Ding, Q., Steig, E. J., Battisti, D. S. & Wallace, J. M. Influence of the tropics on the Southern Annular Mode. J. Clim. 25, 6330–6348 (2012).

Article 

Google Scholar
 

Gillett, Z. E., Hendon, H. H., Arblaster, J. M. & Lin, H. Sensitivity of the Southern Hemisphere wintertime teleconnection to the location of ENSO heating. J. Clim. 36, 2497–2514 (2023).

Article 

Google Scholar
 

Hoskins, B. J. & Ambrizzi, T. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 50, 1661–1671 (1993).

Article 

Google Scholar
 

Fan, K. Zonal asymmetry of the Antarctic oscillation. Geophys. Res. Lett. 34, L02706 (2007).

Article 

Google Scholar
 

Fogt, R. L., Jones, J. M. & Renwick, J. Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J. Clim. 25, 6253–6270 (2012).

Article 

Google Scholar
 

Campitelli, E., Díaz, L. B. & Vera, C. Assessment of zonally symmetric and asymmetric components of the Southern Annular Mode using a novel approach. Clim. Dyn. 58, 161–178 (2022).

Article 

Google Scholar
 

Kidston, J., Renwick, J. A. & McGregor, J. Hemispheric-scale seasonality of the Southern Annular Mode and impacts on the climate of New Zealand. J. Clim. 22, 4759–4770 (2009).

Article 

Google Scholar
 

Pezza, A. B., Rashid, H. A. & Simmonds, I. Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO. Clim. Dyn. 38, 57–73 (2012).

Article 

Google Scholar
 

Irving, D. & Simmonds, I. A novel approach to diagnosing Southern Hemisphere planetary wave activity and its influence on regional climate variability. J. Clim. 28, 9041–9057 (2015).

Article 

Google Scholar
 

Ciasto, L. M., Simpkins, G. R. & England, M. H. Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Clim. 28, 56–65 (2015).

Article 

Google Scholar
 

Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J. & Orr, A. The Amundsen Sea Low. Int. J. Climatol. 33, 1818–1829 (2013).

Article 

Google Scholar
 

Clem, K. R., Renwick, J. A. & McGregor, J. Large-scale forcing of the Amundsen Sea Low and its influence on sea ice and West Antarctic temperature. J. Clim. 30, 8405–8424 (2017).

Article 

Google Scholar
 

Schroeter, S., O’Kane, T. J. & Sandery, P. A. Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode. Cryosphere 17, 701–717 (2023).

Article 

Google Scholar
 

Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001).

Article 
CAS 

Google Scholar
 

Thompson, D. W. J., Baldwin, M. P. & Solomon, S. Stratosphere–troposphere coupling in the Southern Hemisphere. J. Atmos. Sci. 62, 708–715 (2005).

Article 

Google Scholar
 

Byrne, N. J. & Shepherd, T. G. Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere. J. Clim. 31, 3467–3483 (2018).

Article 

Google Scholar
 

Lim, E.-P., Hendon, H. H. & Thompson, D. W. J. Seasonal evolution of stratosphere–troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate. J. Geophys. Res. Atmos. 123, 12,002–12,016 (2018).

Article 

Google Scholar
 

Jucker, M. & Reichler, T. Life cycle of major sudden stratospheric warmings in the Southern Hemisphere from a multimillennial GCM simulation. J. Clim. 36, 643–661 (2023).

Article 

Google Scholar
 

Ambaum, M. H. P. & Hoskins, B. J. The NAO troposphere–stratosphere connection. J. Clim. 15, 1969–1978 (2002).

Article 

Google Scholar
 

Baldwin, M. P., Birner, T. & Ayarzagüena, B. Tropospheric amplification of stratosphere–troposphere coupling. Q. J. R. Meteorol. Soc. 150, 5188–5205 (2024).

Article 

Google Scholar
 

Jucker, M. & Goyal, R. Ozone-forced Southern Annular Mode during Antarctic stratospheric warming events. Geophys. Res. Lett. 49, e2021GL095270 (2022).

Article 

Google Scholar
 

Hendon, H. H., Lim, E.-P. & Abhik, S. Impact of interannual ozone variations on the downward coupling of the 2002 Southern Hemisphere stratospheric warming. J. Geophys. Res. Atmos. 125, e2020JD032952 (2020).

Article 

Google Scholar
 

Fogt, R. L., Bromwich, D. H. & Hines, K. M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 36, 1555–1576 (2011).

Article 

Google Scholar
 

Lu, J., Chen, G. & Frierson, D. M. W. Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Clim. 21, 5835–5851 (2008).

Article 

Google Scholar
 

L’Heureux, M. L. & Thompson, D. W. J. Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Clim. 19, 276–287 (2006).

Article 

Google Scholar
 

Robinson, W. A. A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci. 57, 415–422 (2000).

Article 

Google Scholar
 

Lim, E.-P., Hendon, H. H. & Rashid, H. Seasonal predictability of the Southern Annular Mode due to its association with ENSO. J. Clim. 26, 8037–8054 (2013).

Article 

Google Scholar
 

Wilson, A. B., Bromwich, D. H. & Hines, K. M. Simulating the mutual forcing of anomalous high southern latitude atmospheric circulation by El Niño flavors and the Southern Annular Mode. J. Clim. 29, 2291–2309 (2016).

Article 

Google Scholar
 

Wedd, R. et al. ACCESS-S2: the upgraded bureau of meteorology multi-week to seasonal prediction system. J. South. Hemisph. Earth Syst. Sci. 72, 218–242 (2022).

Article 

Google Scholar
 

Fogt, R. L. & Bromwich, D. H. Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode. J. Clim. 19, 979–997 (2006).

Article 

Google Scholar
 

Yang, D. et al. Role of tropical variability in driving decadal shifts in the Southern Hemisphere summertime eddy-driven jet. J. Clim. 33, 5445–5463 (2020).

Article 

Google Scholar
 

World Meteorological Organization. Scientific Assessment of Ozone Depletion: 2022 (WMO, 2022).

Matthews, A. J. & Meredith, M. P. Variability of Antarctic circumpolar transport and the Southern Annular Mode associated with the Madden–Julian Oscillation. Geophys. Res. Lett. 31, L24312 (2004).

Article 

Google Scholar
 

Flatau, M. & Kim, Y.-J. Interaction between the MJO and polar circulations. J. Clim. 26, 3562–3574 (2013).

Article 

Google Scholar
 

Pohl, B., Fauchereau, N., Reason, C. J. C. & Rouault, M. Relationships between the Antarctic Oscillation, the Madden–Julian Oscillation, and ENSO, and consequences for rainfall analysis. J. Clim. 23, 238–254 (2010).

Article 

Google Scholar
 

Fauchereau, N., Pohl, B. & Lorrey, A. Extratropical impacts of the Madden–Julian Oscillation over New Zealand from a weather regime perspective. J. Clim. 29, 2161–2175 (2016).

Article 

Google Scholar
 

Lim, E. P. & Hendon, H. H. Understanding the contrast of Australian springtime rainfall of 1997 and 2002 in the frame of two flavors of El Niño. J. Clim. 28, 2804–2822 (2015).

Article 

Google Scholar
 

Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 4, 564–569 (2014).

Article 
CAS 

Google Scholar
 

Dätwyler, C. et al. Teleconnection stationarity, variability and trends of the southern annular mode (SAM) during the last millennium. Clim. Dyn. 51, 2321–2339 (2017).

Article 

Google Scholar
 

Villalba, R. et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 5, 793–798 (2012).

Article 
CAS 

Google Scholar
 

King, J., Anchukaitis, K. J., Allen, K., Vance, T. & Hessl, A. Trends and variability in the Southern Annular Mode over the Common Era. Nat. Commun. 14, 2324 (2023).

Article 
CAS 

Google Scholar
 

Morgenstern, O. The Southern Annular Mode in 6th Coupled Model Intercomparison Project Models. J. Geophys. Res. Atmos. 126, e2020JD034161 (2021).

Article 

Google Scholar
 

Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

Article 
CAS 

Google Scholar
 

Eyring, V. et al. in Climate Change 2021 — The Physical Science Basis (eds Masson-Delmotte, V. et al.) https://doi.org/10.1017/9781009157896.005 (IPCC, Cambridge Univ. Press, 2021).

Polvani, L. M., Waugh, D. W., Correa, G. J. P. & Son, S.-W. Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24, 795–812 (2011).

Article 

Google Scholar
 

Gillett, N. P. & Fyfe, J. C. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 40, 1189–1193 (2013).

Article 

Google Scholar
 

Son, S.-W. et al. Tropospheric jet response to Antarctic ozone depletion: an update with Chemistry–climate Model Initiative (CCMI) models. Environ. Res. Lett. 13, 054024 (2018).

Article 

Google Scholar
 

Shaw, T. iffany et al. Emerging climate change signals in atmospheric circulation. AGU Adv. 5, 2024AV001297 (2024).

Article 

Google Scholar
 

Garfinkel, C. I. et al. Impact of parameterized convection on the storm track and near-surface jet response to global warming: implications for mechanisms of the future poleward shift. J. Clim. 37, 2541–2564 (2024).

Article 

Google Scholar
 

Lachmy, O. The relation between the latitudinal shifts of midlatitude diabatic heating, eddy heat flux, and the eddy-driven jet in CMIP6 models. J. Geophys. Res. Atmos. 127, e2022JD036556 (2022).

Article 

Google Scholar
 

Tan, Z. & Shaw, T. A. Quantifying the impact of wind and surface humidity-induced surface heat exchange on the circulation shift in response to increased CO. Geophys. Res. Lett. 47, e2020GL088053 (2020).

Article 

Google Scholar
 

Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D. & Chang, K.-L. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579, 544–548 (2020).

Article 
CAS 

Google Scholar
 

Zheng, F. Slowing down of the summer Southern Hemisphere annular mode trend against the background of ozone recovery. Atmos. Ocean. Sci. Lett. 17, 100375 (2024).

Article 

Google Scholar
 

Schneider, D. P., Deser, C. & Fan, T. Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the Southern Ocean westerly winds. J. Clim. 28, 9350–9372 (2015).

Article 

Google Scholar
 

Fogt, R. L. et al. A twentieth century perspective on summer Antarctic pressure change and variability and contributions from tropical SSTs and ozone depletion. Geophys. Res. Lett. 44, 9918–9927 (2017).

Article 

Google Scholar
 

Goyal, R., Sen Gupta, A., Jucker, M. & England, M. H. Historical and projected changes in the Southern Hemisphere surface westerlies. Geophys. Res. Lett. 48, e2020GL090849 (2021).

Article 

Google Scholar
 

King, A. D. et al. Exploring climate stabilisation at different global warming levels in ACCESS-ESM-1.5. Earth Syst. Dyn. 15, 1353–1383 (2024).

Article 

Google Scholar
 

Chamberlain, M. A., Ziehn, T. & Law, R. M. The Southern Ocean as the climate’s freight train — driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5. Biogeosciences 21, 3053–3073 (2024).

Article 
CAS 

Google Scholar
 

Sniderman, J. M. K. et al. Southern Hemisphere subtropical drying as a transient response to warming. Nat. Clim. Change 9, 232–236 (2019).

Article 

Google Scholar
 

Grose, M. R. & King, A. D. The circulation and rainfall response in the Southern Hemisphere extra-tropics to climate stabilisation. Weather Clim. Extrem. 41, 100577 (2023).

Article 

Google Scholar
 

Boschat, G., Purich, A., Rudeva, I. & Arblaster, J. Impact of zonal and meridional atmospheric flow on surface climate and extremes in the Southern Hemisphere. J. Clim. 36, 5041–5061 (2023).

Article 

Google Scholar
 

Ortiz-Guzmán, V., Jucker, M. & Sherwood, S. Zonal Wavenumber 3 forces extreme precipitation in South America. J. Clim. 37, 3649–3660 (2024).

Article 

Google Scholar
 

Uotila, P., Vihma, T. & Tsukernik, M. Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation. Geophys. Res. Lett. 40, 3237–3241 (2013).

Article 

Google Scholar
 

Grieger, J., Leckebusch, G. C., Raible, C. C., Rudeva, I. & Simmonds, I. Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent. Tellus Dyn. Meteorol. Oceanogr. 70, 1–18 (2018).


Google Scholar
 

Pepler, A. Projections of synoptic anticyclones for the twenty-first century. Clim. Dyn. 61, 3271–3287 (2023).

Article 

Google Scholar
 

Rudeva, I. & Simmonds, I. Variability and trends of global atmospheric frontal activity and links with large-scale modes of variability. J. Clim. 28, 3311–3330 (2015).

Article 

Google Scholar
 

Bernardes Pezza, A., Durrant, T., Simmonds, I. & Smith, I. Southern Hemisphere synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and southern Australia rainfall. J. Clim. 21, 5566–5584 (2008).

Article 

Google Scholar
 

Spensberger, C., Reeder, M. J., Spengler, T. & Patterson, M. The connection between the Southern Annular Mode and a feature-based perspective on Southern Hemisphere midlatitude winter variability. J. Clim. 33, 115–129 (2020).

Article 

Google Scholar
 

Simmonds, I., Keay, K. & Tristram Bye, J. A. Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Clim. 25, 1945–1962 (2012).

Article 

Google Scholar
 

Saenko, O. A., Fyfe, J. C. & England, M. H. On the response of the oceanic wind-driven circulation to atmospheric CO2 increase. Clim. Dyn. 25, 415–426 (2005).

Article 

Google Scholar
 

Oke, P. R. & England, M. H. Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Clim. 17, 1040–1054 (2004).

Article 

Google Scholar
 

Fyfe, J. C. & Saenko, O. A. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett. 33, L06701 (2006).

Article 

Google Scholar
 

Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701 (2005).

Article 

Google Scholar
 

Hall, A. & Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 15, 3043–3057 (2002).

Article 

Google Scholar
 

Sen Gupta, A. & England, M. H. Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Clim. 19, 4457–4486 (2006).

Article 

Google Scholar
 

Bi, D., Budd, W. F., Hirst, A. C. & Wu, X. Response of the Antarctic circumpolar current transport to global warming in a coupled model. Geophys. Res. Lett. 29, 26-1–26–4 (2002).

Article 

Google Scholar
 

Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R. & Schwarzkopf, F. U. The response of the Antarctic circumpolar current to recent climate change. Nat. Geosci. 1, 864–869 (2008).

Article 

Google Scholar
 

Tansley, C. E. & Marshall, D. P. On the dynamics of wind-driven circumpolar currents. J. Phys. Oceanogr. 31, 3258–3273 (2001).

Article 

Google Scholar
 

Munday, D. R., Johnson, H. L. & Marshall, D. P. Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr. 43, 507–532 (2013).

Article 

Google Scholar
 

Morrison, A. K. & Hogg, A. M.cC. On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr. 43, 140–148 (2013).

Article 

Google Scholar
 

Martínez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Change 11, 397–403 (2021).

Article 

Google Scholar
 

Rintoul, S. N. G., Alberto C. Rintoul, S. in Ocean Circulation and Climate — A 21st Century Perspective Vol. 103, 471–492 (Academic, 2013).

Schmidt, C., Morrison, A. K. & England, M. H. Wind- and sea-ice-driven interannual variability of Antarctic Bottom Water formation. J. Geophys. Res. Ocean. 128, e2023JC019774 (2023).

Article 

Google Scholar
 

Zhang, Z. et al. Evidence for large-scale climate forcing of dense shelf water variability in the Ross Sea. Nat. Commun. 15, 8190 (2024).

Article 
CAS 

Google Scholar
 

Marshall, J. et al. The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 372, 20130040 (2014).


Google Scholar
 

Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2015).

Article 

Google Scholar
 

Dong, Y., Polvani, L. M. & Bonan, D. B. Recent multi-decadal southern ocean surface cooling unlikely caused by Southern Annular Mode trends. Geophys. Res. Lett. 50, e2023GL106142 (2023).

Article 

Google Scholar
 

Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).

Article 

Google Scholar
 

Kostov, Y. et al. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim. Dyn. 48, 1595–1609 (2017).

Article 

Google Scholar
 

Seviour, W. J. M. et al. The Southern Ocean sea surface temperature response to ozone depletion: a multimodel comparison. J. Clim. 32, 5107–5121 (2019).

Article 

Google Scholar
 

Doddridge, E. W. et al. Eddy compensation dampens Southern Ocean sea surface temperature response to westerly wind trends. Geophys. Res. Lett. 46, 4365–4377 (2019).

Article 

Google Scholar
 

Doddridge, E. W. & Marshall, J. C. Modulation of the seasonal cycle of Antarctic sea ice extent related to the Southern Annular Mode. Geophys. Res. Lett. 44, 9761–9768 (2017).

Article 

Google Scholar
 

Seviour, W. J. M., Gnanadesikan, A. & Waugh, D. W. The transient response of the Southern Ocean to stratospheric ozone depletion. J. Clim. 29, 7383–7396 (2016).

Article 

Google Scholar
 

Doddridge, E. W., Marshall, J., Song, H., Campin, J.-M. & Kelley, M. Southern Ocean heat storage, reemergence, and winter sea ice decline induced by summertime winds. J. Clim. 34, 1403–1415 (2021).

Article 

Google Scholar
 

Abernathey, R. P. et al. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9, 596–601 (2016).

Article 
CAS 

Google Scholar
 

Pellichero, V., Sallée, J.-B., Chapman, C. C. & Downes, S. M. The Southern Ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun. 9, 1789 (2018).

Article 

Google Scholar
 

Raphael, M. N. The influence of atmospheric zonal wave three on Antarctic sea ice variability. J. Geophys. Res. Atmos. 112, 2006JD007852 (2007).

Article 

Google Scholar
 

Yuan, X. & Li, C. Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res. Ocean. 113, 2006JC004067 (2008).

Article 

Google Scholar
 

Eabry, M. D., Goyal, R., Taschetto, A. S., Hobbs, W. & Sen Gupta, A. Combined impacts of Southern Annular Mode and zonal wave 3 on Antarctic sea ice variability. J. Clim. 37, 1759–1775 (2024).

Article 

Google Scholar
 

Raphael, M. N. et al. The Amundsen Sea Low: variability, change, and impact on Antarctic climate. Bull. Am. Meteorol. Soc. 97, 111–121 (2016).

Article 

Google Scholar
 

Hosking, J. S., Orr, A., Marshall, G. J., Turner, J. & Phillips, T. The influence of the Amundsen–Bellingshausen seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Clim. 26, 6633–6648 (2013).

Article 

Google Scholar
 

Seviour, W. J. M., Gnanadesikan, A., Waugh, D. & Pradal, M.-A. Transient response of the Southern Ocean to changing ozone: regional responses and physical mechanisms. J. Clim. 30, 2463–2480 (2017).

Article 

Google Scholar
 

Parkinson, C. L. A 40-y record reveals gradual antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl Acad. Sci. USA 116, 14414–14423 (2019).

Article 
CAS 

Google Scholar
 

Wang, G. et al. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 10, 13 (2019).

Article 
CAS 

Google Scholar
 

Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14 (2019).

Article 
CAS 

Google Scholar
 

Boehm, C. L., Thompson, D. W. J. & Blanchard-Wrigglesworth, E. The key role of the Southern Annular Mode during the sea-ice maximum for Antarctic sea ice and its recent loss. Commun. Earth Environ. 6, 833 (2025).

Article 

Google Scholar
 

Sigmond, M. & Fyfe, J. C. The Antarctic sea ice response to the ozone hole in climate models. J. Clim. 27, 1336–1342 (2014).

Article 

Google Scholar
 

Polvani, L. M. et al. Interannual SAM modulation of Antarctic sea ice extent does not account for its long-term trends, pointing to a limited role for ozone depletion. Geophys. Res. Lett. 48, e2021GL094871 (2021).

Article 

Google Scholar
 

Hobbs, W. et al. Observational evidence for a regime shift in summer Antarctic sea Ice. J. Clim. 37, 2263–2275 (2024).

Article 

Google Scholar
 

Meredith, M. et al. Polar regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 203–320 (Cambridge Univ. Press, 2019).

Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).

Article 

Google Scholar
 

Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

Article 

Google Scholar
 

Verfaillie, D. et al. The circum-Antarctic ice-shelves respond to a more positive Southern Annular Mode with regionally varied melting. Commun. Earth Environ. 3, 139 (2022).

Article 

Google Scholar
 

Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

Article 
CAS 

Google Scholar
 

Heywood, K. et al. Between the devil and the deep blue sea: the role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves. Oceanography 29, 118–129 (2016).

Article 

Google Scholar
 

Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

Article 
CAS 

Google Scholar
 

Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).

Article 
CAS 

Google Scholar
 

Jenkins, A. et al. Decadal ocean forcing and Antarctic ice sheet response: lessons from the Amundsen Sea. Oceanography 29, 106–117 (2016).

Article 

Google Scholar
 

Kimura, S. et al. Oceanographic controls on the variability of ice-shelf basal melting and circulation of glacial meltwater in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res. Ocean. 122, 10131–10155 (2017).

Article 

Google Scholar
 

Dinniman, M. S., Klinck, J. M. & Hofmann, E. E. Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J. Clim. 25, 4799–4816 (2012).

Article 

Google Scholar
 

Zhang, Z. et al. Linkage of the physical environments in the northern Antarctic Peninsula region to the Southern Annular Mode and the implications for the phytoplankton production. Prog. Oceanogr. 188, 102416 (2020).

Article 

Google Scholar
 

Hazel, J. E. & Stewart, A. L. Are the near-Antarctic easterly winds weakening in response to enhancement of the Southern Annular Mode? J. Clim. 32, 1895–1918 (2019).

Article 

Google Scholar
 

Meijers, A. J. S. The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 372, 20130296 (2014).

CAS 

Google Scholar
 

Downes, S. M. & Hogg, A. M. Southern Ocean circulation and eddy compensation in CMIP5 models. J. Clim. 26, 7198–7220 (2013).

Article 

Google Scholar
 

Spence, P. et al. Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Clim. Change 7, 595–603 (2017).

Article 

Google Scholar
 

Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

Article 
CAS 

Google Scholar
 

Purich, A. & England, M. H. Historical and future projected warming of Antarctic shelf bottom water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).

Article 

Google Scholar
 

Hosking, J. S., Orr, A., Bracegirdle, T. J. & Turner, J. Future circulation changes off West Antarctica: sensitivity of the Amundsen Sea Low to projected anthropogenic forcing. Geophys. Res. Lett. 43, 367–376 (2016).

Article 

Google Scholar
 

Neme, J., England, M. H. & McC. Hogg, A. Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett. 49, e2022GL098820 (2022).

Article 

Google Scholar
 

Marshall, G. J. Half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures. Int. J. Climatol. 27, 373–383 (2007).

Article 

Google Scholar
 

Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

Article 
CAS 

Google Scholar
 

Marshall, G. J. & Thompson, D. W. J. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. J. Geophys. Res. Atmos. 121, 3276–3289 (2016).

Article 

Google Scholar
 

Saunderson, D., Mackintosh, A. N., McCormack, F. S., Jones, R. S. & van Dalum, C. T. How does the Southern Annular Mode control surface melt in East Antarctica? Geophys. Res. Lett. 51, e2023GL105475 (2024).

Article 

Google Scholar
 

Van Den Broeke, M. R. & Van Lipzig, N. P. M. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann. Glaciol. 39, 119–126 (2004).

Article 

Google Scholar
 

Reid, K. J., Arblaster, J. M., Alexander, L. V. & Siems, S. T. Spurious trends in high latitude Southern Hemisphere precipitation observations. Geophys. Res. Lett. 51, e2023GL106994 (2024).

Article 

Google Scholar
 

Marshall, G. J., Thompson, D. W. J. & van den Broeke, M. R. The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett. 44, 11,580–11,589 (2017).

Article 

Google Scholar
 

Wille, J. D. et al. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos. 126, e2020JD033788 (2021).

Article 

Google Scholar
 

Hartmann, D. L. A PV view of zonal flow vacillation. J. Atmos. Sci. 52, 2561–2576 (1995).

Article 

Google Scholar
 

Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).

Article 

Google Scholar
 

Previdi, M. & Polvani, L. M. Impact of the montreal protocol on Antarctic surface mass balance and implications for global sea level rise. J. Clim. 30, 7247–7253 (2017).

Article 

Google Scholar
 

Chemke, R., Previdi, M., England, M. R. & Polvani, L. M. Distinguishing the impacts of ozone and ozone-depleting substances on the recent increase in Antarctic surface mass balance. Cryosphere 14, 4135–4144 (2020).

Article 

Google Scholar
 

Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic ice sheet mitigated twentieth-century sea-level rise. Nat. Clim. Change 9, 34–39 (2019).

Article 
CAS 

Google Scholar
 

Dalaiden, Q., Goosse, H., Lenaerts, J. T. M., Cavitte, M. G. P. & Henderson, N. Future Antarctic snow accumulation trend is dominated by atmospheric synoptic-scale events. Commun. Earth Environ. 1, 62 (2020).

Article 

Google Scholar
 

Zhang, B., Yao, Y., Liu, L. & Yang, Y. Interannual ice mass variations over the Antarctic ice sheet from 2003 to 2017 were linked to El Niño–Southern Oscillation. Earth Planet. Sci. Lett. 560, 116796 (2021).

Article 
CAS 

Google Scholar
 

Pfeffer, J., Cazenave, A. & Barnoud, A. Analysis of the interannual variability in satellite gravity solutions: detection of climate modes fingerprints in water mass displacements across continents and oceans. Clim. Dyn. 58, 1065–1084 (2022).

Article 

Google Scholar
 

Kim, B.-H., Seo, K.-W., Eom, J., Chen, J. & Wilson, C. R. Antarctic ice mass variations from 1979 to 2017 driven by anomalous precipitation accumulation. Sci. Rep. 10, 20366 (2020).

Article 
CAS 

Google Scholar
 

King, M. A., Lyu, K. & Zhang, X. Climate variability a key driver of recent Antarctic ice-mass change. Nat. Geosci. 16, 1128–1135 (2023).

Article 
CAS 

Google Scholar
 

Frölicher, T. L. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862–886 (2015).

Article 

Google Scholar
 

Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).

Article 

Google Scholar
 

Menviel, L. & Spence, P. Southern Ocean circulation’s impact on atmospheric CO2 concentration. Front. Mar. Sci. 10, 1328534 (2024).

Article 

Google Scholar
 

Lenton, A. & Matear, R. J. Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Glob. Biogeochem. Cycles 21, 2006GB002714 (2007).

Article 

Google Scholar
 

Lovenduski, N. S., Gruber, N., Doney, S. C. & Lima, I. D. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Glob. Biogeochem. Cycles 21, GB2026 (2007).

Article 

Google Scholar
 

Hauck, J. et al. Seasonally different carbon flux changes in the Southern Ocean in response to the Southern Annular Mode. Glob. Biogeochem. Cycles 27, 1236–1245 (2013).

Article 
CAS 

Google Scholar
 

Sallée, J.-B., Speer, K. G. & Rintoul, S. R. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 3, 273–279 (2010).

Article 

Google Scholar
 

Dufour, C. O. et al. Eddy compensation and controls of the enhanced sea-to-air CO2 flux during positive phases of the Southern Annular Mode. Glob. Biogeochem. Cycles 27, 950–961 (2013).

Article 
CAS 

Google Scholar
 

Menviel, L. C. et al. Enhanced Southern Ocean CO₂ outgassing as a result of stronger and poleward shifted Southern Hemispheric westerlies. Biogeosciences 20, 4413–4431 (2023).

Article 
CAS 

Google Scholar
 

Sallée, J.-B., Matear, R. J., Rintoul, S. R. & Lenton, A. Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci. 5, 579–584 (2012).

Article 

Google Scholar
 

Ito, T., Woloszyn, M. & Mazloff, M. Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463, 80–83 (2010).

Article 
CAS 

Google Scholar
 

Keppler, L. & Landschützer, P. Regional wind variability modulates the Southern Ocean carbon sink. Sci. Rep. 9, 7384 (2019).

Article 

Google Scholar
 

Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

Article 
CAS 

Google Scholar
 

Cai, W. et al. Southern Ocean warming and its climatic impacts. Sci. Bull. 68, 946–960 (2023).

Article 

Google Scholar
 

Ayers, J. M. & Strutton, P. G. Nutrient variability in subAntarctic mode waters forced by the Southern Annular Mode and ENSO. Geophys. Res. Lett. 40, 3419–3423 (2013).

Article 

Google Scholar
 

de Baar, H. J. W., Buma, A., Nolting, R., Cadee, G. & Jacques, G. On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia seas. Mar. Ecol. Prog. Ser. 65, 105–122 (1990).

Article 

Google Scholar
 

Lovenduski, N. S. & Gruber, N. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32, L11603 (2005).

Article 

Google Scholar
 

Noh, K. M., Lim, H.-G. & Kug, J.-S. Zonally asymmetric phytoplankton response to the Southern Annular Mode in the marginal sea of the Southern Ocean. Sci. Rep. 11, 10266 (2021).

Article 
CAS 

Google Scholar
 

Greaves, B. L. et al. The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean. Biogeosciences 17, 3815–3835 (2020).

Article 
CAS 

Google Scholar
 

Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023).

Article 
CAS 

Google Scholar
 

Revell, L. E., Robertson, F., Douglas, H., Morgenstern, O. & Frame, D. Influence of ozone forcing on 21st century Southern Hemisphere surface westerlies in CMIP6 models. Geophys. Res. Lett. 49, e2022GL098252 (2022).

Article 
CAS 

Google Scholar
 

Yeager, S. G. et al. Reduced Southern Ocean warming enhances global skill and signal-to-noise in an eddy-resolving decadal prediction system. npj Clim. Atmos. Sci. 6, 107 (2023).

Article 

Google Scholar
 

Hartmann, D. L. The Antarctic ozone hole and the pattern effect on climate sensitivity. Proc. Natl Acad. Sci. USA 119, e2207889119 (2022).

Article 
CAS 

Google Scholar
 

Zhang, X. et al. Evaluation of the seasonality and spatial aspects of the Southern Annular Mode in CMIP6 models. Int. J. Climatol. 42, 3820–3837 (2022).

Article 

Google Scholar
 

Udy, D. G., Vance, T. R., Kiem, A. S. & Holbrook, N. J. A synoptic bridge linking sea salt aerosol concentrations in East Antarctic snowfall to Australian rainfall. Commun. Earth Environ. 3, 175 (2022).

Article 

Google Scholar
 

Silvestri, G. E. & Vera, C. S. Antarctic oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett. 30, 2115 (2003).

Article 

Google Scholar
 

Vasconcellos, F. C. & Cavalcanti, I. F. A. Extreme precipitation over Southeastern Brazil in the austral summer and relations with the Southern Hemisphere annular mode. Atmos. Sci. Lett. 11, 21–26 (2010).

Article 

Google Scholar
 

Smith, D. M. et al. Attribution of multi-annual to decadal changes in the climate system: the Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP). Front. Clim. 4, 955414 (2022).

Article 

Google Scholar
 

Fiddes, S. L., Protat, A., Mallet, M. D., Alexander, S. P. & Woodhouse, M. T. Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right? Atmos. Chem. Phys. 22, 14603–14630 (2022).

Article 
CAS 

Google Scholar
 

Turner, J. & Comiso, J. Solve Antarctica’s sea-ice puzzle. Nature 547, 275–277 (2017).

Article 
CAS 

Google Scholar
 

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

Article 

Google Scholar
 

Mo, K. C. Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Clim. 13, 3599–3610 (2000).

Article 

Google Scholar
 

Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev. 4, 33–45 (2011).

Article 

Google Scholar
 

Meier, W., Fetterer, F., & Windnagel, A. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4 (National Snow and Ice Data Center, 2021).

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

Article 

Google Scholar
 

Seviour, W. J. M. et al. Skillful seasonal prediction of the Southern Annular Mode and Antarctic ozone. J. Clim. 27, 7462–7474 (2014).

Article 

Google Scholar
 

Trenberth, K. E. The definition of El Niño. Bull. Am. Meteorol. Soc. 78, 2771–2778 (1997).

Article 

Google Scholar
 

Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans https://doi.org/10.1029/2006JC003798 (2007).