Lanza, M. et al. The growing memristor industry. Nature 640, 613–622 (2025).
Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).
Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).
Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).
Raoux, S. et al. Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52, 465–479 (2008).
Ambrogio, S. et al. An analog-AI chip for energy-efficient speech recognition and transcription. Nature 620, 768–775 (2023).
Arnaud, F. et al. High density embedded PCM cell in 28 nm FDSOI technology for automotive micro-controller applications. In Proc. IEEE International Electron Devices Meeting 24.2.1–24.2.4 (IEEE, 2020).
Dyre, J. C. Colloquium: the glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953–972 (2006).
Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).
Ballmaier, J., Walfort, S. & Salinga, M. Resistance drift of phase change materials beyond the power law. Adv. Electron. Mater. 11, 2400905 (2025).
Viollet, V. et al. Temperature and drift-aware high-level PCM-based array model for reliable hardware IMC design. In Proc. IEEE International Reliability Physics Symposium 1–4 (IEEE, 2025).
Nandakumar, S. R. et al. Precision of synaptic weights programmed in phase-change memory devices for deep learning inference. In Proc. IEEE International Electron Devices Meeting 29.4.1–29.4.4 (IEEE, 2020).
Rasch, M. J. et al. Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. Nat. Commun. 14, 5282 (2023).
Cavagna, A. Fragile vs. strong liquids: a saddles-ruled scenario. Europhys. Lett. 53, 490 (2001).
Gupta, P. K. & Kob, W. Basis glass states: new insights from the potential energy landscape. J. Non-Cryst. Solids: X 3, 100031 (2019).
Mocanu, F. C. et al. Microscopic observation of two-level systems in a metallic glass model. J. Chem. Phys. 158, 014501 (2023).
Stillinger, F. H. & Weber, T. A. Hidden structure in liquids. Phys. Rev. A 25, 978–989 (1982).
Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).
Schrøder, T. B., Sastry, S., Dyre, J. C. & Glotzer, S. C. Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. J. Chem. Phys. 112, 9834–9840 (2000).
Doliwa, B. & Heuer, A. Energy barriers and activated dynamics in a supercooled Lennard-Jones liquid. Phys. Rev. E 67, 031506 (2003).
Weissman, M. B. Low-frequency noise as a tool to study disordered materials. Annu. Rev. Mater. Res. 26, 395–429 (1996).
Zipoli, F., Krebs, D. & Curioni, A. Structural origin of resistance drift in amorphous GeTe. Phys. Rev. B 93, 115201 (2016).
Le Gallo, M., Krebs, D., Zipoli, F., Salinga, M. & Sebastian, A. Collective structural relaxation in phase-change memory devices. Adv. Electron. Mater. 4, 1700627 (2018).
Fantini, P. et al. Characterization and modelling of low-frequency noise in PCM devices. In Proc. IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).
Nardone, M., Kozub, V. I., Karpov, I. V. & Karpov, V. G. Possible mechanisms for 1/f noise in chalcogenide glasses: a theoretical description. Phys. Rev. B 79, 165206 (2009).
Ralls, K. S. & Buhrman, R. A. Microscopic study of 1/f noise in metal nanobridges. Phys. Rev. B 44, 5800–5817 (1991).
Parman, C. E., Israeloff, N. E. & Kakalios, J. Random telegraph-switching noise in coplanar current measurements of amorphous silicon. Phys. Rev. B 44, 8391–8394 (1991).
Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids: \(\frac{1}{f}\) noise. Rev. Mod. Phys. 53, 497–516 (1981).
Weissman, M. B. \(\frac{1}{f}\) noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988).
Yu, C. C. Why study noise due to two level systems: a suggestion for experimentalists. J. Low Temp. Phys. 137, 251–265 (2004).
Fugazza, D., Ielmini, D., Lavizzari, S. & Lacaita, A. L. Random telegraph signal noise in phase change memory devices. In Proc. IEEE International Reliability Physics Symposium 743–749 (IEEE, 2010).
Cobelli, M., Dragoni, D., Caravati, S. & Bernasconi, M. Metal-semiconductor transition in the supercooled liquid phase of the Ge2Sb2Te5 and GeTe compounds. Phys. Rev. Mater. 5, 045004 (2021).
Holle, N., Walfort, S., Mazzarello, R. & Salinga, M. Effect of Peierls-like distortions on transport in amorphous phase change devices. Commun. Mater. 6, 56 (2025).
Zucchini, W., MacDonald, I. & Langrock, R. Hidden Markov Models for Time Series: An Introduction Using R 2nd edn (Chapman & Hall/CRC, 2016).
Schreiber, J. pomegranate: fast and flexible probabilistic modeling in Python. J. Mach. Learn. Res. 18, 1–6 (2018).
Sosso, G. C., Colombo, J., Behler, J., Del Gado, E. & Bernasconi, M. Dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. J. Phys. Chem. B 118, 13621–13628 (2014).
Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).
Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013).
Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. & Parrinello, M. First-principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects. J. Phys.: Condens. Matter 21, 255501 (2009).
Konstantinou, K., Mocanu, F. C., Lee, T.-H. & Elliott, S. R. Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5. Nat. Commun. 10, 3065 (2019).
Konstantinou, K., Elliott, S. R. & Akola, J. Inherent electron and hole trapping in amorphous phase-change memory materials: Ge2Sb2Te5. J. Mater. Chem. C 10, 6744–6753 (2022).
Vineyard, G. H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957).
Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).
Sosso, G. C., Donadio, D., Caravati, S., Behler, J. & Bernasconi, M. Thermal transport in phase-change materials from atomistic simulations. Phys. Rev. B 86, 104301 (2012).
Middleton, T. F. & Wales, D. J. Energy landscapes of some model glass formers. Phys. Rev. B 64, 024205 (2001).
Pollak, E., Grabert, H. & Hänggi, P. Theory of activated rate processes for arbitrary frequency dependent friction: solution of the turnover problem. J. Chem. Phys.91, 4073–4087 (1989).
Rao, M. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 615, 823–829 (2023).
Payvand, M. et al. Self-organization of an inhomogeneous memristive hardware for sequence learning. Nat. Commun. 13, 5793 (2022).
Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3, 409–418 (2020).
Dalgaty, T., Vianello, E. & Querlioz, D. Memristors for Bayesian in-memory computing. Nat. Mater. https://doi.org/10.1038/s41563-025-02409-1 (2025).