Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
Mardirossian, N. & M. H.-G. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017).
Kryachko, E. S. & Ludeña, E. V. Energy density functional theory of many-electron systems, vol. 4 (Springer Science & Business Media, 2012).
Bender, M., Heenen, P.-H. & Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003).
Lalazissis, G. A., Ring, P. & Vretenar, D. Extended density functionals in nuclear structure physics, vol. 641 (Springer Science & Business Media, 2004).
Meng, J. Relativistic density functional for nuclear structure, vol. 10 (World Scientific, 2016).
Epelbaum, E., Hammer, H.-W. & Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009).
Nakatsukasa, T., Matsuyanagi, K., Matsuo, M. & Yabana, K. Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys. 88, 045004 (2016).
Bulgac, A., Forbes, M. M., Jin, S., Perez, R. N. & Schunck, N. Minimal nuclear energy density functional. Phys. Rev. C. 97, 044313 (2018).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
Brack, M., Guet, C. & Hakansson, H.-B. Selfconsistent semiclassical description of average nuclear properties-a link between microscopic and macroscopic models. Phys. Rep. 123, 275–364 (1985).
Centelles, M., Schuck, P. & Viñas, X. Thomas–Fermi theory for atomic nuclei revisited. Ann. Phys. 322, 363 (2007).
Colò, G. & Hagino, K. Orbital-free density functional theory: differences and similarities between electronic and nuclear systems. Prog. Theor. Exp. Phys. 2023, 103D01 (2023).
Centelles, M., Pi, M., Vinas, X., Garcias, F. & Barranco, M. Self-consistent extended Thomas-Fermi calculations in nuclei. Nucl. Phys. A 510, 397–416 (1990).
Dutta, A., Arcoragi, J.-P., Pearson, J., Behrman, R. & Tondeur, F. Thomas-Fermi approach to nuclear mass formula: (i). spherical nuclei. Nucl. Phys. A 458, 77–94 (1986).
Aboussir, Y., Pearson, J., Dutta, A. & Tondeur, F. Nuclear mass formula via an approximation to the hartree-fock method. At. Data Nucl. Data Tables 61, 127 – 176 (1995).
Brack, M. et al. Funny hills: the shell-correction approach to nuclear shell effects and its applications to the fission process. Rev. Mod. Phys. 44, 320–405 (1972).
Brack, M. & Pauli, H. On Strutinsky’s averaging method. Nucl. Phys. A 207, 401–424 (1973).
Strutinsky, V. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95, 420–442 (1967).
Strutinsky, V. “Shells” in deformed nuclei. Nucl. Phys. A 122, 1–33 (1968).
Brack, M. & Quentin, P. Self-consistent average density matrices and the Strutinsky energy theorem. Phys. Lett. B 56, 421–423 (1975).
Bohigas, O., Campi, X., Krivine, H. & Treiner, J. Extensions of the Thomas-Fermi approximation for finite nuclei. Phys. Lett. B 64, 381–385 (1976).
Chu, Y., Jennings, B. & Brack, M. Nuclear binding energies and liquid drop parameters in the extended Thomas-Fermi approximation. Phys. Lett. B 68, 407–411 (1977).
Tozer, D. J., Ingamells, V. E. & Handy, N. C. Exchange-correlation potentials. J. Chem. Phys. 105, 9200–9213 (1996).
Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).
Boehnlein, A. et al. Colloquium: machine learning in nuclear physics. Rev. Mod. Phys. 94, 031003 (2022).
He, W. et al. Machine learning in nuclear physics at low and intermediate energies. Sci. China Phys. Mech. Astron. 66, 282001 (2023).
Niu, Z. M. et al. Radial basis function approach in nuclear mass predictions. Phys. Rev. C. 88, 024325 (2013).
Utama, R., Piekarewicz, J. & Prosper, H. B. Nuclear mass predictions for the crustal composition of neutron stars: a Bayesian neural network approach. Phys. Rev. C. 93, 014311 (2016).
Niu, Z. M. & Liang, H. Z. Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects. Phys. Lett. B 778, 48 – 53 (2018).
Neufcourt, L., Cao, Y. C., Nazarewicz, W. & Viens, F. Bayesian approach to model-based extrapolation of nuclear observables. Phys. Rev. C. 98, 034318 (2018).
Pastore, A., Neill, D., Powell, H., Medler, K. & Barton, C. Impact of statistical uncertainties on the composition of the outer crust of a neutron star. Phys. Rev. C. 101, 035804 (2020).
Wu, X. H. & Zhao, P. W. Predicting nuclear masses with the kernel ridge regression. Phys. Rev. C. 101, 051301 (R) (2020).
Wu, X. H., Guo, L. H. & Zhao, P. W. Nuclear masses in extended kernel ridge regression with odd-even effects. Phys. Lett. B 819, 136387 (2021).
Wu, X. H., Lu, Y. Y. & Zhao, P. W. Multi-task learning on nuclear masses and separation energies with the kernel ridge regression. Phys. Lett. B 834, 137394 (2022).
Niu, Z. M. & Liang, H. Z. Nuclear mass predictions with machine learning reaching the accuracy required by r-process studies. Phys. Rev. C. 106, L021303 (2022).
Akkoyun, S., Bayram, T., Kara, S. O. & Sinan, A. An artificial neural network application on nuclear charge radii. J. Phys. G Nucl. Part. Phys. 40, 055106 (2013).
Utama, R., Chen, W.-C. & Piekarewicz, J. Nuclear charge radii: density functional theory meets Bayesian neural networks. J. Phys. G Nucl. Part. Phys. 43, 114002 (2016).
Ma, Y. et al. Predictions of nuclear charge radii and physical interpretations based on the naive Bayesian probability classifier. Phys. Rev. C. 101, 014304 (2020).
Wu, D., Bai, C. L., Sagawa, H. & Zhang, H. Q. Calculation of nuclear charge radii with a trained feed-forward neural network. Phys. Rev. C. 102, 054323 (2020).
Ma, J.-Q. & Zhang, Z.-H. Improved phenomenological nuclear charge radius formulae with kernel ridge regression. Chin. Phys. C. 46, 074105 (2022).
Dong, X.-X., An, R., Lu, J.-X. & Geng, L.-S. Nuclear charge radii in Bayesian neural networks revisited. Phys. Lett. B 838, 137726 (2023).
Niu, Z. M., Liang, H. Z., Sun, B. H., Long, W. H. & Niu, Y. F. Predictions of nuclear β-decay half-lives with machine learning and their impact on r-process nucleosynthesis. Phys. Rev. C. 99, 064307 (2019).
Lovell, A. E., Nunes, F. M., Catacora-Rios, M. & King, G. B. Recent advances in the quantification of uncertainties in reaction theory. J. Phys. G Nucl. Part. Phys. 48, 014001 (2020).
Wu, D., Bai, C. L., Sagawa, H., Nishimura, S. & Zhang, H. Q. β-delayed one-neutron emission probabilities within a neural network model. Phys. Rev. C. 104, 054303 (2021).
Saxena, G., Sharma, P. K. & Saxena, P. Modified empirical formulas and machine learning for alpha-decay systematics. J. Phys. G Nucl. Part. Phys. 48, 055103 (2021).
Neudecker, D. et al. Informing nuclear physics via machine learning methods with differential and integral experiments. Phys. Rev. C. 104, 034611 (2021).
Wang, X., Zhu, L. & Su, J. Modeling complex networks of nuclear reaction data for probing their discovery processes. Chin. Phys. C. 45, 124103 (2021).
Huang, T. X., Wu, X. H. & Zhao, P. W. Application of kernel ridge regression in predicting neutron-capture reaction cross-sections. Commun. Theor. Phys. 74, 095302 (2022).
Jiang, W. G., Hagen, G. & Papenbrock, T. Extrapolation of nuclear structure observables with artificial neural networks. Phys. Rev. C. 100, 054326 (2019).
Lasseri, R.-D., Regnier, D., Ebran, J.-P. & Penon, A. Taming nuclear complexity with a committee of multilayer neural networks. Phys. Rev. Lett. 124, 162502 (2020).
Yoshida, S. Nonparametric Bayesian approach to extrapolation problems in configuration interaction methods. Phys. Rev. C. 102, 024305 (2020).
Wang, X., Zhu, L. & Su, J. Providing physics guidance in Bayesian neural networks from the input layer: the case of giant dipole resonance predictions. Phys. Rev. C. 104, 034317 (2021).
Bai, J., Niu, Z., Sun, B. & Niu, Y. The description of giant dipole resonance key parameters with multitask neural networks. Phys. Lett. B 815, 136147 (2021).
Neufcourt, L., Cao, Y., Nazarewicz, W., Olsen, E. & Viens, F. Neutron drip line in the CA region from Bayesian model averaging. Phys. Rev. Lett. 122, 062502 (2019).
Neufcourt, L. et al. Quantified limits of the nuclear landscape. Phys. Rev. C. 101, 044307 (2020).
Wang, Z.-A., Pei, J., Liu, Y. & Qiang, Y. Bayesian evaluation of incomplete fission yields. Phys. Rev. Lett. 123, 122501 (2019).
Lovell, A. E., Mohan, A. T. & Talou, P. Quantifying uncertainties on fission fragment mass yields with mixture density networks. J. Phys. G-Nucl. Part. Phys. 47, 114001 (2020).
Qiao, C. Y. et al. Bayesian evaluation of charge yields of fission fragments of 239U. Phys. Rev. C. 103, 034621 (2021).
Keeble, J. & Rios, A. Machine learning the deuteron. Phys. Lett. B 809, 135743 (2020).
Adams, C., Carleo, G., Lovato, A. & Rocco, N. Variational Monte Carlo calculations of a ≤4 nuclei with an artificial neural-network correlator ansatz. Phys. Rev. Lett. 127, 022502 (2021).
Lovato, A., Adams, C., Carleo, G. & Rocco, N. Hidden-nucleons neural-network quantum states for the nuclear many-body problem. Phys. Rev. Res. 4, 043178 (2022).
Yang, Y. & Zhao, P. A consistent description of the relativistic effects and three-body interactions in atomic nuclei. Phys. Lett. B 835, 137587 (2022).
Yang, Y. L. & Zhao, P. W. Deep-neural-network approach to solving the ab initio nuclear structure problem. Phys. Rev. C. 107, 034320 (2023).
Rigo, M., Hall, B., Hjorth-Jensen, M., Lovato, A. & Pederiva, F. Solving the nuclear pairing model with neural network quantum states. Phys. Rev. E 107, 025310 (2023).
Pederson, R., Kalita, B. & Burke, K. Machine learning and density functional theory. Nat. Rev. Phys. 4, 357–358 (2022).
Huang, B., von Rudorff, G. F. & von Lilienfeld, O. A. The central role of density functional theory in the ai age. Science 381, 170–175 (2023).
Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).
Brockherde, F. et al. By-passing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017).
Nagai, R., Akashi, R. & Sugino, O. Completing density functional theory by machine learning hidden messages from molecules. npj Computational Mater. 6, 43 (2020).
Bogojeski, M., Vogt-Maranto, L., Tuckerman, M. E., Müller, K.-R. & Burke, K. Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 11, 5223 (2020).
Moreno, J. R., Carleo, G. & Georges, A. Deep learning the Hohenberg-Kohn maps of density functional theory. Phys. Rev. Lett. 125, 076402 (2020).
Li, L. et al. Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics. Phys. Rev. Lett. 126, 036401 (2021).
Kirkpatrick, J. et al. Pushing the frontiers of density functionals by solving the fractional electron problem. Science 374, 1385–1389 (2021).
Margraf, J. T. & Reuter, K. Pure non-local machine-learned density functional theory for electron correlation. Nat. Commun. 12, 1–7 (2021).
Ma, H., Narayanaswamy, A., Riley, P. & Li, L. Evolving symbolic density functionals. Sci. Adv. 8, eabq0279 (2022).
Bai, Y., Vogt-Maranto, L., Tuckerman, M. E. & Glover, W. J. Machine learning the Hohenberg-Kohn map for molecular excited states. Nat. Commun. 13, 7044 (2022).
Wu, X. H., Ren, Z. X. & Zhao, P. W. Nuclear energy density functionals from machine learning. Phys. Rev. C. 105, L031303 (2022).
Hizawa, N., Hagino, K. & Yoshida, K. Analysis of a Skyrme energy density functional with deep learning. Phys. Rev. C. 108, 034311 (2023).
Chen, Y. Y. & Wu, X. H. Machine learning nuclear orbital-free density functional based on Thomas-Fermi approach. Int. J. Mod. Phys. E 33, 2450012 (2024).
Vautherin, D. Hartree-Fock calculations with Skyrme’s interaction. ii. Axially deformed nuclei. Phys. Rev. C. 7, 296–316 (1973).
Lee, S.-J. et al. Relativistic Hartree calculations for axially deformed nuclei. Phys. Rev. Lett. 57, 2916–2919 (1986).
Pannert, W., Ring, P. & Boguta, J. Relativistic mean-field theory and nuclear deformation. Phys. Rev. Lett. 59, 2420–2422 (1987).
Dobaczewski, J., Flocard, H. & Treiner, J. Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103–139 (1984).
Bender, M., Rutz, K., Reinhard, P.-G. & Maruhn, J. A. Consequences of the center–of–mass correction in nuclear mean–field models. Eur. Phys. J. A 7, 467–478 (2000).
Beiner, M., Flocard, H., Van Giai, N. & Quentin, P. Nuclear ground-state properties and self-consistent calculations with the Skyrme interaction: (i). spherical description. Nucl. Phys. A 238, 29–69 (1975).
Slater, J. C. A simplification of the Hartree-Fock method. Phys. Rev. 81, 385–390 (1951).
Staszczak, A., Stoitsov, M., Baran, A. & Nazarewicz, W. Augmented Lagrangian method for constrained nuclear density functional theory. Eur. Phys. J. A 46, 85–90 (2010).
National Nuclear Data Center (NNDC), https://www.nndc.bnl.gov/ (2025).