Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

ADS 
MathSciNet 

Google Scholar
 

Mardirossian, N. & M. H.-G. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017).

ADS 

Google Scholar
 

Kryachko, E. S. & Ludeña, E. V. Energy density functional theory of many-electron systems, vol. 4 (Springer Science & Business Media, 2012).

Bender, M., Heenen, P.-H. & Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003).

ADS 

Google Scholar
 

Lalazissis, G. A., Ring, P. & Vretenar, D. Extended density functionals in nuclear structure physics, vol. 641 (Springer Science & Business Media, 2004).

Meng, J. Relativistic density functional for nuclear structure, vol. 10 (World Scientific, 2016).

Epelbaum, E., Hammer, H.-W. & Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009).

ADS 

Google Scholar
 

Nakatsukasa, T., Matsuyanagi, K., Matsuo, M. & Yabana, K. Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys. 88, 045004 (2016).

ADS 
MathSciNet 

Google Scholar
 

Bulgac, A., Forbes, M. M., Jin, S., Perez, R. N. & Schunck, N. Minimal nuclear energy density functional. Phys. Rev. C. 97, 044313 (2018).

ADS 

Google Scholar
 

Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

ADS 
MathSciNet 

Google Scholar
 

Brack, M., Guet, C. & Hakansson, H.-B. Selfconsistent semiclassical description of average nuclear properties-a link between microscopic and macroscopic models. Phys. Rep. 123, 275–364 (1985).

ADS 

Google Scholar
 

Centelles, M., Schuck, P. & Viñas, X. Thomas–Fermi theory for atomic nuclei revisited. Ann. Phys. 322, 363 (2007).

ADS 

Google Scholar
 

Colò, G. & Hagino, K. Orbital-free density functional theory: differences and similarities between electronic and nuclear systems. Prog. Theor. Exp. Phys. 2023, 103D01 (2023).


Google Scholar
 

Centelles, M., Pi, M., Vinas, X., Garcias, F. & Barranco, M. Self-consistent extended Thomas-Fermi calculations in nuclei. Nucl. Phys. A 510, 397–416 (1990).

ADS 

Google Scholar
 

Dutta, A., Arcoragi, J.-P., Pearson, J., Behrman, R. & Tondeur, F. Thomas-Fermi approach to nuclear mass formula: (i). spherical nuclei. Nucl. Phys. A 458, 77–94 (1986).

ADS 

Google Scholar
 

Aboussir, Y., Pearson, J., Dutta, A. & Tondeur, F. Nuclear mass formula via an approximation to the hartree-fock method. At. Data Nucl. Data Tables 61, 127 – 176 (1995).


Google Scholar
 

Brack, M. et al. Funny hills: the shell-correction approach to nuclear shell effects and its applications to the fission process. Rev. Mod. Phys. 44, 320–405 (1972).

ADS 

Google Scholar
 

Brack, M. & Pauli, H. On Strutinsky’s averaging method. Nucl. Phys. A 207, 401–424 (1973).

ADS 

Google Scholar
 

Strutinsky, V. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95, 420–442 (1967).

ADS 

Google Scholar
 

Strutinsky, V. “Shells” in deformed nuclei. Nucl. Phys. A 122, 1–33 (1968).

ADS 

Google Scholar
 

Brack, M. & Quentin, P. Self-consistent average density matrices and the Strutinsky energy theorem. Phys. Lett. B 56, 421–423 (1975).

ADS 

Google Scholar
 

Bohigas, O., Campi, X., Krivine, H. & Treiner, J. Extensions of the Thomas-Fermi approximation for finite nuclei. Phys. Lett. B 64, 381–385 (1976).

ADS 

Google Scholar
 

Chu, Y., Jennings, B. & Brack, M. Nuclear binding energies and liquid drop parameters in the extended Thomas-Fermi approximation. Phys. Lett. B 68, 407–411 (1977).

ADS 

Google Scholar
 

Tozer, D. J., Ingamells, V. E. & Handy, N. C. Exchange-correlation potentials. J. Chem. Phys. 105, 9200–9213 (1996).

ADS 

Google Scholar
 

Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).

ADS 

Google Scholar
 

Boehnlein, A. et al. Colloquium: machine learning in nuclear physics. Rev. Mod. Phys. 94, 031003 (2022).

ADS 

Google Scholar
 

He, W. et al. Machine learning in nuclear physics at low and intermediate energies. Sci. China Phys. Mech. Astron. 66, 282001 (2023).

ADS 

Google Scholar
 

Niu, Z. M. et al. Radial basis function approach in nuclear mass predictions. Phys. Rev. C. 88, 024325 (2013).

ADS 

Google Scholar
 

Utama, R., Piekarewicz, J. & Prosper, H. B. Nuclear mass predictions for the crustal composition of neutron stars: a Bayesian neural network approach. Phys. Rev. C. 93, 014311 (2016).

ADS 

Google Scholar
 

Niu, Z. M. & Liang, H. Z. Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects. Phys. Lett. B 778, 48 – 53 (2018).


Google Scholar
 

Neufcourt, L., Cao, Y. C., Nazarewicz, W. & Viens, F. Bayesian approach to model-based extrapolation of nuclear observables. Phys. Rev. C. 98, 034318 (2018).

ADS 

Google Scholar
 

Pastore, A., Neill, D., Powell, H., Medler, K. & Barton, C. Impact of statistical uncertainties on the composition of the outer crust of a neutron star. Phys. Rev. C. 101, 035804 (2020).

ADS 

Google Scholar
 

Wu, X. H. & Zhao, P. W. Predicting nuclear masses with the kernel ridge regression. Phys. Rev. C. 101, 051301 (R) (2020).

ADS 

Google Scholar
 

Wu, X. H., Guo, L. H. & Zhao, P. W. Nuclear masses in extended kernel ridge regression with odd-even effects. Phys. Lett. B 819, 136387 (2021).


Google Scholar
 

Wu, X. H., Lu, Y. Y. & Zhao, P. W. Multi-task learning on nuclear masses and separation energies with the kernel ridge regression. Phys. Lett. B 834, 137394 (2022).


Google Scholar
 

Niu, Z. M. & Liang, H. Z. Nuclear mass predictions with machine learning reaching the accuracy required by r-process studies. Phys. Rev. C. 106, L021303 (2022).

ADS 

Google Scholar
 

Akkoyun, S., Bayram, T., Kara, S. O. & Sinan, A. An artificial neural network application on nuclear charge radii. J. Phys. G Nucl. Part. Phys. 40, 055106 (2013).

ADS 

Google Scholar
 

Utama, R., Chen, W.-C. & Piekarewicz, J. Nuclear charge radii: density functional theory meets Bayesian neural networks. J. Phys. G Nucl. Part. Phys. 43, 114002 (2016).

Ma, Y. et al. Predictions of nuclear charge radii and physical interpretations based on the naive Bayesian probability classifier. Phys. Rev. C. 101, 014304 (2020).

ADS 

Google Scholar
 

Wu, D., Bai, C. L., Sagawa, H. & Zhang, H. Q. Calculation of nuclear charge radii with a trained feed-forward neural network. Phys. Rev. C. 102, 054323 (2020).

ADS 

Google Scholar
 

Ma, J.-Q. & Zhang, Z.-H. Improved phenomenological nuclear charge radius formulae with kernel ridge regression. Chin. Phys. C. 46, 074105 (2022).

ADS 

Google Scholar
 

Dong, X.-X., An, R., Lu, J.-X. & Geng, L.-S. Nuclear charge radii in Bayesian neural networks revisited. Phys. Lett. B 838, 137726 (2023).


Google Scholar
 

Niu, Z. M., Liang, H. Z., Sun, B. H., Long, W. H. & Niu, Y. F. Predictions of nuclear β-decay half-lives with machine learning and their impact on r-process nucleosynthesis. Phys. Rev. C. 99, 064307 (2019).

ADS 

Google Scholar
 

Lovell, A. E., Nunes, F. M., Catacora-Rios, M. & King, G. B. Recent advances in the quantification of uncertainties in reaction theory. J. Phys. G Nucl. Part. Phys. 48, 014001 (2020).

ADS 

Google Scholar
 

Wu, D., Bai, C. L., Sagawa, H., Nishimura, S. & Zhang, H. Q. β-delayed one-neutron emission probabilities within a neural network model. Phys. Rev. C. 104, 054303 (2021).

ADS 

Google Scholar
 

Saxena, G., Sharma, P. K. & Saxena, P. Modified empirical formulas and machine learning for alpha-decay systematics. J. Phys. G Nucl. Part. Phys. 48, 055103 (2021).

ADS 

Google Scholar
 

Neudecker, D. et al. Informing nuclear physics via machine learning methods with differential and integral experiments. Phys. Rev. C. 104, 034611 (2021).

ADS 

Google Scholar
 

Wang, X., Zhu, L. & Su, J. Modeling complex networks of nuclear reaction data for probing their discovery processes. Chin. Phys. C. 45, 124103 (2021).

ADS 

Google Scholar
 

Huang, T. X., Wu, X. H. & Zhao, P. W. Application of kernel ridge regression in predicting neutron-capture reaction cross-sections. Commun. Theor. Phys. 74, 095302 (2022).

ADS 

Google Scholar
 

Jiang, W. G., Hagen, G. & Papenbrock, T. Extrapolation of nuclear structure observables with artificial neural networks. Phys. Rev. C. 100, 054326 (2019).

ADS 

Google Scholar
 

Lasseri, R.-D., Regnier, D., Ebran, J.-P. & Penon, A. Taming nuclear complexity with a committee of multilayer neural networks. Phys. Rev. Lett. 124, 162502 (2020).

ADS 

Google Scholar
 

Yoshida, S. Nonparametric Bayesian approach to extrapolation problems in configuration interaction methods. Phys. Rev. C. 102, 024305 (2020).

ADS 

Google Scholar
 

Wang, X., Zhu, L. & Su, J. Providing physics guidance in Bayesian neural networks from the input layer: the case of giant dipole resonance predictions. Phys. Rev. C. 104, 034317 (2021).

ADS 

Google Scholar
 

Bai, J., Niu, Z., Sun, B. & Niu, Y. The description of giant dipole resonance key parameters with multitask neural networks. Phys. Lett. B 815, 136147 (2021).


Google Scholar
 

Neufcourt, L., Cao, Y., Nazarewicz, W., Olsen, E. & Viens, F. Neutron drip line in the CA region from Bayesian model averaging. Phys. Rev. Lett. 122, 062502 (2019).

ADS 

Google Scholar
 

Neufcourt, L. et al. Quantified limits of the nuclear landscape. Phys. Rev. C. 101, 044307 (2020).

ADS 

Google Scholar
 

Wang, Z.-A., Pei, J., Liu, Y. & Qiang, Y. Bayesian evaluation of incomplete fission yields. Phys. Rev. Lett. 123, 122501 (2019).

ADS 

Google Scholar
 

Lovell, A. E., Mohan, A. T. & Talou, P. Quantifying uncertainties on fission fragment mass yields with mixture density networks. J. Phys. G-Nucl. Part. Phys. 47, 114001 (2020).

ADS 

Google Scholar
 

Qiao, C. Y. et al. Bayesian evaluation of charge yields of fission fragments of 239U. Phys. Rev. C. 103, 034621 (2021).

ADS 

Google Scholar
 

Keeble, J. & Rios, A. Machine learning the deuteron. Phys. Lett. B 809, 135743 (2020).


Google Scholar
 

Adams, C., Carleo, G., Lovato, A. & Rocco, N. Variational Monte Carlo calculations of a ≤4 nuclei with an artificial neural-network correlator ansatz. Phys. Rev. Lett. 127, 022502 (2021).

ADS 

Google Scholar
 

Lovato, A., Adams, C., Carleo, G. & Rocco, N. Hidden-nucleons neural-network quantum states for the nuclear many-body problem. Phys. Rev. Res. 4, 043178 (2022).


Google Scholar
 

Yang, Y. & Zhao, P. A consistent description of the relativistic effects and three-body interactions in atomic nuclei. Phys. Lett. B 835, 137587 (2022).


Google Scholar
 

Yang, Y. L. & Zhao, P. W. Deep-neural-network approach to solving the ab initio nuclear structure problem. Phys. Rev. C. 107, 034320 (2023).

ADS 

Google Scholar
 

Rigo, M., Hall, B., Hjorth-Jensen, M., Lovato, A. & Pederiva, F. Solving the nuclear pairing model with neural network quantum states. Phys. Rev. E 107, 025310 (2023).

ADS 
MathSciNet 

Google Scholar
 

Pederson, R., Kalita, B. & Burke, K. Machine learning and density functional theory. Nat. Rev. Phys. 4, 357–358 (2022).


Google Scholar
 

Huang, B., von Rudorff, G. F. & von Lilienfeld, O. A. The central role of density functional theory in the ai age. Science 381, 170–175 (2023).

ADS 

Google Scholar
 

Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).

ADS 

Google Scholar
 

Brockherde, F. et al. By-passing the Kohn-Sham equations with machine learning. Nat. Commun. 8, 872 (2017).

ADS 

Google Scholar
 

Nagai, R., Akashi, R. & Sugino, O. Completing density functional theory by machine learning hidden messages from molecules. npj Computational Mater. 6, 43 (2020).

ADS 

Google Scholar
 

Bogojeski, M., Vogt-Maranto, L., Tuckerman, M. E., Müller, K.-R. & Burke, K. Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 11, 5223 (2020).

ADS 

Google Scholar
 

Moreno, J. R., Carleo, G. & Georges, A. Deep learning the Hohenberg-Kohn maps of density functional theory. Phys. Rev. Lett. 125, 076402 (2020).

ADS 
MathSciNet 

Google Scholar
 

Li, L. et al. Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics. Phys. Rev. Lett. 126, 036401 (2021).

ADS 

Google Scholar
 

Kirkpatrick, J. et al. Pushing the frontiers of density functionals by solving the fractional electron problem. Science 374, 1385–1389 (2021).

ADS 

Google Scholar
 

Margraf, J. T. & Reuter, K. Pure non-local machine-learned density functional theory for electron correlation. Nat. Commun. 12, 1–7 (2021).

ADS 

Google Scholar
 

Ma, H., Narayanaswamy, A., Riley, P. & Li, L. Evolving symbolic density functionals. Sci. Adv. 8, eabq0279 (2022).

ADS 

Google Scholar
 

Bai, Y., Vogt-Maranto, L., Tuckerman, M. E. & Glover, W. J. Machine learning the Hohenberg-Kohn map for molecular excited states. Nat. Commun. 13, 7044 (2022).

ADS 

Google Scholar
 

Wu, X. H., Ren, Z. X. & Zhao, P. W. Nuclear energy density functionals from machine learning. Phys. Rev. C. 105, L031303 (2022).

ADS 

Google Scholar
 

Hizawa, N., Hagino, K. & Yoshida, K. Analysis of a Skyrme energy density functional with deep learning. Phys. Rev. C. 108, 034311 (2023).

ADS 

Google Scholar
 

Chen, Y. Y. & Wu, X. H. Machine learning nuclear orbital-free density functional based on Thomas-Fermi approach. Int. J. Mod. Phys. E 33, 2450012 (2024).

ADS 

Google Scholar
 

Vautherin, D. Hartree-Fock calculations with Skyrme’s interaction. ii. Axially deformed nuclei. Phys. Rev. C. 7, 296–316 (1973).

ADS 

Google Scholar
 

Lee, S.-J. et al. Relativistic Hartree calculations for axially deformed nuclei. Phys. Rev. Lett. 57, 2916–2919 (1986).

ADS 

Google Scholar
 

Pannert, W., Ring, P. & Boguta, J. Relativistic mean-field theory and nuclear deformation. Phys. Rev. Lett. 59, 2420–2422 (1987).

ADS 

Google Scholar
 

Dobaczewski, J., Flocard, H. & Treiner, J. Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103–139 (1984).

ADS 

Google Scholar
 

Bender, M., Rutz, K., Reinhard, P.-G. & Maruhn, J. A. Consequences of the center–of–mass correction in nuclear mean–field models. Eur. Phys. J. A 7, 467–478 (2000).

ADS 

Google Scholar
 

Beiner, M., Flocard, H., Van Giai, N. & Quentin, P. Nuclear ground-state properties and self-consistent calculations with the Skyrme interaction: (i). spherical description. Nucl. Phys. A 238, 29–69 (1975).

ADS 

Google Scholar
 

Slater, J. C. A simplification of the Hartree-Fock method. Phys. Rev. 81, 385–390 (1951).

ADS 

Google Scholar
 

Staszczak, A., Stoitsov, M., Baran, A. & Nazarewicz, W. Augmented Lagrangian method for constrained nuclear density functional theory. Eur. Phys. J. A 46, 85–90 (2010).

ADS 

Google Scholar
 

National Nuclear Data Center (NNDC), https://www.nndc.bnl.gov/ (2025).