Rousseau, D. L. & Porto, S. Polywater: polymer or artifact? Science 167, 1715–1719 (1970).

ADS 

Google Scholar
 

Derjaguin, B. Polywater reviewed. Nature 301, 9–10 (1983).

ADS 

Google Scholar
 

Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

ADS 

Google Scholar
 

Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005).

ADS 

Google Scholar
 

Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

ADS 

Google Scholar
 

Köfinger, J., Hummer, G. & Dellago, C. Macroscopically ordered water in nanopores. Proc. Natl Acad. Sci. USA 105, 13218–13222 (2008).

ADS 

Google Scholar
 

Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).

ADS 

Google Scholar
 

Bampoulis, P., Lohse, D., Zandvliet, H. J. & Poelsema, B. Coarsening dynamics of ice crystals intercalated between graphene and supporting mica. Appl. Phys. Lett. 108, 011601 (2016).

ADS 

Google Scholar
 

Severin, N., Lange, P., Sokolov, I. M. & Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene–mica slit pore. Nano Lett. 12, 774–779 (2012).

ADS 

Google Scholar
 

Kim, J.-S. et al. Between scylla and charybdis: hydrophobic graphene-guided water diffusion on hydrophilic substrates. Sci. Rep. 3, 2309 (2013).


Google Scholar
 

Song, J. et al. Evidence of Stranski–Krastanov growth at the initial stage of atmospheric water condensation. Nat. Commun. 5, 4837 (2014).

ADS 

Google Scholar
 

Zhou, W. et al. The observation of square ice in graphene questioned. Nature 528, E1–E2 (2015).


Google Scholar
 

Sobrino Fernandez, M., Neek-Amal, M. & Peeters, F. M. AA-stacked bilayer square ice between graphene layers. Phys. Rev. B 92, 245428 (2015).

ADS 

Google Scholar
 

Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

ADS 

Google Scholar
 

Emmerich, T. et al. Nanofluidics. Nat Rev Methods Primers 4, 69 (2024).


Google Scholar
 

Boya, R., Keerthi, A. & Parambath, M. S. The wonderland of angstrofluidics. Phys. Today 77, 26–33 (2024).


Google Scholar
 

Cui, B. et al. Low-dimensional and confined ice. Annu. Rev. Mater. Res. 53, 371–397 (2023).

ADS 

Google Scholar
 

Takaiwa, D., Hatano, I., Koga, K. & Tanaka, H. Phase diagram of water in carbon nanotubes. Proc. Natl Acad. Sci. USA 105, 39–43 (2008).

ADS 

Google Scholar
 

Zangi, R. & Mark, A. E. Monolayer ice. Phys. Rev. Lett. 91, 025502 (2003).

ADS 

Google Scholar
 

Maniwa, Y. et al. Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 401, 534–538 (2005).

ADS 

Google Scholar
 

Agrawal, K. V., Shimizu, S., Drahushuk, L. W., Kilcoyne, D. & Strano, M. S. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat. Nanotechnol. 12, 267 (2017).

ADS 

Google Scholar
 

Kolesnikov, A. I. et al. Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93, 035503 (2004).

ADS 

Google Scholar
 

Kapil, V. et al. The first-principles phase diagram of monolayer nanoconfined water. Nature 609, 512–516 (2022).

ADS 

Google Scholar
 

Lin, B., Jiang, J., Zeng, X. C. & Li, L. Temperature–pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field. Nat. Commun. 14, 4110 (2023).

ADS 

Google Scholar
 

Vasu, K. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 7, 12168 (2016).

ADS 

Google Scholar
 

Giovambattista, N., Rossky, P. J. & Debenedetti, P. G. Phase transitions induced by nanoconfinement in liquid water. Phys. Rev. Lett. 102, 050603 (2009).

ADS 

Google Scholar
 

Giovambattista, N., Rossky, P. J. & Debenedetti, P. G. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys. Rev. E 73, 041604 (2006).

ADS 

Google Scholar
 

Negi, S., Carvalho, A., Trushin, M. & Neto, A. C. Edge-driven phase transitions in 2d ice. J. Phys. Chem. C 126, 16006–16015 (2022).


Google Scholar
 

Raju, M., Van Duin, A. & Ihme, M. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes. Sci. Rep. 8, 3851 (2018).

ADS 

Google Scholar
 

Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

ADS 

Google Scholar
 

Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).


Google Scholar
 

Hanasaki, I. & Nakatani, A. Flow structure of water in carbon nanotubes: Poiseuille type or plug-like? J. Chem. Phys. 124, 144708 (2006).

ADS 

Google Scholar
 

Neek-Amal, M. et al. Fast water flow through graphene nanocapillaries: a continuum model approach involving the microscopic structure of confined water. Appl. Phys. Lett. 113, 083101 (2018).

ADS 

Google Scholar
 

Keerthi, A. et al. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12, 3092 (2021).

ADS 

Google Scholar
 

Thomas, J. A. & McGaughey, A. J. Reassessing fast water transport through carbon nanotubes. Nano Lett. 8, 2788–2793 (2008).

ADS 

Google Scholar
 

Neek-Amal, M., Peeters, F. M., Grigorieva, I. V. & Geim, A. K. Commensurability effects in viscosity of nanoconfined water. ACS Nano 10, 3685–3692 (2016).


Google Scholar
 

Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).

ADS 

Google Scholar
 

Wu, D. et al. Probing structural superlubricity of two-dimensional water transport with atomic resolution. Science 384, 1254–1259 (2024).

ADS 

Google Scholar
 

Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).


Google Scholar
 

Aluru, N. R. et al. Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).


Google Scholar
 

Gao, J., Feng, Y., Guo, W. & Jiang, L. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem. Soc. Rev. 46, 5400–5424 (2017).


Google Scholar
 

Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

ADS 

Google Scholar
 

Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

ADS 

Google Scholar
 

Kobayashi, H., Hiki, Y. & Takahashi, H. An experimental study on the shear viscosity of solids. J. Appl. Phys. 80, 122–130 (1996).

ADS 

Google Scholar
 

Modig, K., Pfrommer, B. G. & Halle, B. Temperature-dependent hydrogen-bond geometry in liquid water. Phys. Rev. Lett. 90, 075502 (2003).

ADS 

Google Scholar
 

Muthachikavil, A. V., Peng, B., Kontogeorgis, G. M. & Liang, X. Distinguishing weak and strong hydrogen bonds in liquid water — a potential of mean force-based approach. J. Phys. Chem. B 125, 7187–7198 (2021).


Google Scholar
 

Martiniano, H. & Galamba, N. Insights on hydrogen-bond lifetimes in liquid and supercooled water. J. Phys. Chem. B 117, 16188–16195 (2013).


Google Scholar
 

Zhao, W.-H. et al. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates. Acc. Chem. Res. 47, 2505–2513 (2014).


Google Scholar
 

Trushin, M., Carvalho, A. & Castro Neto, A. Two-dimensional non-linear hydrodynamics and nanofluidics. Commun. Phys. 6, 162 (2023).


Google Scholar
 

Biggs, C. M. & Oatley-Radcliffe, D. L. Proposing a plausible molecular structure for Ice XI: a coupled study using Rietveld refinement and density functional theory. Chem. Phys. 579, 112200 (2024).


Google Scholar
 

Z˘ivković, A., Terranova, U. & de Leeuw, N. H. Water is cool: advanced phonon dynamics in Ice Ih and Ice XI via machine learning potentials and quantum nuclear vibrations. J. Chem. Theory Comput. 21, 1978–1989 (2025).


Google Scholar
 

Qin, X., Yuan, Q., Zhao, Y., Xie, S. & Liu, Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 11, 2173–2177 (2011).

ADS 

Google Scholar
 

Kannam, S. K., Todd, B., Hansen, J. S. & Daivis, P. J. How fast does water flow in carbon nanotubes? J. Chem. Phys. 138, 094701 (2013).

ADS 

Google Scholar
 

Majumder, M., Chopra, N. & Hinds, B. J. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011).


Google Scholar
 

Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).


Google Scholar
 

Chen, X. et al. Nanoscale fluid transport: size and rate effects. Nano Lett. 8, 2988–2992 (2008).

ADS 

Google Scholar
 

Ye, H., Zhang, H., Zhang, Z. & Zheng, Y. Size and temperature effects on the viscosity of water inside carbon nanotubes. Nanoscale Res. Lett. 6, 87 (2011).

ADS 

Google Scholar
 

Zhang, H., Ye, H., Zheng, Y. & Zhang, Z. Prediction of the viscosity of water confined in carbon nanotubes. Microfluid. Nanofluid. 10, 403–414 (2011).


Google Scholar
 

Babu, J. S. & Sathian, S. P. The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes. J. Chem. Phys. 134, 194509 (2011).

ADS 

Google Scholar
 

Myers, T. G. Why are slip lengths so large in carbon nanotubes? Microfluid. Nanofluid. 10, 1141–1145 (2011).


Google Scholar
 

Liu, Y., Wang, Q., Wu, T. & Zhang, L. Fluid structure and transport properties of water inside carbon nanotubes. J. Chem. Phys. 123, 234701 (2005).

ADS 

Google Scholar
 

Teske, V., Vogel, E. & Bich, E. Viscosity measurements on water vapor and their evaluation. J. Chem. Eng. Data 50, 2082–2087 (2005).


Google Scholar
 

Hellmann, R. & Vogel, E. The viscosity of dilute water vapor revisited: new reference values from experiment and theory for temperatures between (250 and 2500) K. J. Chem. Eng. Data 60, 3600–3605 (2015).


Google Scholar
 

Korson, L., Drost-Hansen, W. & Millero, F. J. Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969).


Google Scholar
 

Jaeger, F., Matar, O. K. & Müller, E. A. Bulk viscosity of molecular fluids. J. Phys. Chem. 148, 174504 (2018).


Google Scholar
 

Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

ADS 

Google Scholar
 

Zaragoza, A. et al. Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity. Phys. Chem. Chem. Phys. 21, 13653–13667 (2019).


Google Scholar
 

Corsetti, F., Matthews, P. & Artacho, E. Structural and configurational properties of nanoconfined monolayer ice from first principles. Sci. Rep. 6, 18651 (2016).

ADS 

Google Scholar
 

Dehaoui, A., Issenmann, B. & Caupin, F. Viscosity of deeply supercooled water and its coupling to molecular diffusion. Proc. Natl Acad. Sci. USA 112, 12020–12025 (2015).

ADS 

Google Scholar
 

Cerveny, S., Mallamace, F., Swenson, J., Vogel, M. & Xu, L. Confined water as model of supercooled water. Chem. Rev. 116, 7608–7625 (2016).


Google Scholar
 

Schiller, V. & Vogel, M. Ice-water equilibrium in nanoscale confinement. Phys. Rev. Lett. 132, 016201 (2024).

ADS 

Google Scholar
 

Baran, Ł., Llombart, P., Rżysko, W. & MacDowell, L. G. Ice friction at the nanoscale. Proc. Natl Acad. Sci. USA 119, e2209545119 (2022).

MathSciNet 

Google Scholar
 

Zhao, Y., Wu, Y., Bao, L., Zhou, F. & Liu, W. A new mechanism of the interfacial water film dominating low ice friction. J. Chem. Phys. 157, 234703 (2022).

ADS 

Google Scholar
 

Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z. & Salmeron, M. The premelting of ice studied with photoelectron spectroscopy. J. Phys. Condens. Matter 14, L227 (2002).

ADS 

Google Scholar
 

Louden, P. B. & Gezelter, J. D. Why is ice slippery? Simulations of shear viscosity of the quasi-liquid layer on ice. J. Phys. Chem. Lett. 9, 3686–3691 (2018).


Google Scholar
 

Liefferink, R. W., Hsia, F.-C., Weber, B. & Bonn, D. Friction on ice: how temperature, pressure, and speed control the slipperiness of ice. Phys. Rev. X 11, 011025 (2021).


Google Scholar
 

Ma, N. et al. Continuous and first-order liquid–solid phase transitions in two-dimensional water. J. Phys. Chem. B 126, 8892–8899 (2022).


Google Scholar
 

Han, S., Choi, M., Kumar, P. & Stanley, H. E. Phase transitions in confined water nanofilms. Nat. Phys. 6, 685–689 (2010).


Google Scholar
 

Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics: Fluid Mechanics Vol. 6 (Pergamon, 1987).

Kavokine, N., Netz, R. R. & Bocquet, L. Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377–410 (2021).

ADS 

Google Scholar
 

Gao, Z., Giovambattista, N. & Sahin, O. Phase diagram of water confined by graphene. Sci. Rep. 8, 6228 (2018).

ADS 

Google Scholar
 

Qiu, H., Zeng, X. C. & Guo, W. Water in inhomogeneous nanoconfinement: coexistence of multilayered liquid and transition to ice nanoribbons. ACS Nano 9, 9877–9884 (2015).


Google Scholar
 

Sobrino Fernandez, M., Peeters, F. M. & Neek-Amal, M. Electric-field-induced structural changes in water confined between two graphene layers. Phys. Rev. B 94, 045436 (2016).

ADS 

Google Scholar
 

Zubeltzu, J. & Artacho, E. Simulations of water nano-confined between corrugated planes. J. Chem. Phys. 147, 194509 (2017).

ADS 

Google Scholar
 

Chen, J., Schusteritsch, G., Pickard, C. J., Salzmann, C. G. & Michaelides, A. Two dimensional ice from first principles: structures and phase transitions. Phys. Rev. Lett. 116, 025501 (2016).

ADS 

Google Scholar
 

Corsetti, F., Zubeltzu, J. & Artacho, E. Enhanced configurational entropy in high-density nanoconfined bilayer ice. Phys. Rev. Lett. 116, 085901 (2016).

ADS 

Google Scholar
 

Ghorbanfekr, H., Behler, J. & Peeters, F. M. Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations. J. Phys. Chem. Lett. 11, 7363–7370 (2020).


Google Scholar
 

Kalashami, H., Neek-Amal, M. & Peeters, F. Slippage dynamics of confined water in graphene oxide capillaries. Phys. Rev. Mater. 2, 074004 (2018).


Google Scholar
 

Thomas, J. A., McGaughey, A. J. & Kuter-Arnebeck, O. Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation. Int. J. Therm. Sci. 49, 281–289 (2010).


Google Scholar
 

Calabrò, F., Lee, K. & Mattia, D. Modelling flow enhancement in nanochannels: viscosity and slippage. Appl. Math. Lett. 26, 991–994 (2013).

MathSciNet 

Google Scholar
 

Whitby, M., Cagnon, L., Thanou, M. & Quirke, N. Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8, 2632–2637 (2008).

ADS 

Google Scholar
 

Kotsalis, E., Walther, J. H. & Koumoutsakos, P. Multiphase water flow inside carbon nanotubes. Int. J. Multiph. Flow 30, 995–1010 (2004).

ADS 

Google Scholar
 

Kumar Kannam, S., Todd, B. D., Hansen, J. S. & Daivis, P. J. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J. Chem. Phys. 136, 024705 (2012).

ADS 

Google Scholar
 

Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).

ADS 

Google Scholar
 

Ramos-Alvarado, B., Kumar, S. & Peterson, G. Hydrodynamic slip length as a surface property. Phys. Rev. E 93, 023101 (2016).

ADS 

Google Scholar
 

Wei, N., Peng, X. & Xu, Z. Breakdown of fast water transport in graphene oxides. Phys. Rev. E 89, 012113 (2014).

ADS 

Google Scholar
 

Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

ADS 

Google Scholar
 

Xie, Q. et al. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).

ADS 

Google Scholar
 

Sam, A. et al. Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges. Mol. Simul. 47, 905–924 (2021).


Google Scholar
 

Yang, L., Guo, Y. & Diao, D. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement. Phys. Chem. Chem. Phys. 19, 14048–14054 (2017).


Google Scholar
 

Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

ADS 

Google Scholar
 

Nigues, A., Siria, A., Vincent, P., Poncharal, P. & Bocquet, L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater. 13, 688–693 (2014).

ADS 

Google Scholar
 

Richards, L. A., Schäfer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).


Google Scholar
 

Babu, C. S. & Lim, C. Theory of ionic hydration: insights from molecular dynamics simulations and experiment. J. Phys. Chem. B 103, 7958–7968 (1999).


Google Scholar
 

Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).


Google Scholar
 

Zwolak, M., Lagerqvist, J. & Di Ventra, M. Quantized ionic conductance in nanopores. Phys. Rev. Lett. 103, 128102 (2009).

ADS 

Google Scholar
 

Ball, P. Water — an enduring mystery. Nature 452, 291–292 (2008).

ADS 

Google Scholar
 

Hua, L., Huang, X., Liu, P., Zhou, R. & Berne, B. J. Nanoscale dewetting transition in protein complex folding. J. Phys. Chem. B 111, 9069–9077 (2007).


Google Scholar
 

Cui, S., Yu, J., Kühner, F., Schulten, K. & Gaub, H. E. Double-stranded DNA dissociates into single strands when dragged into a poor solvent. J. Am. Chem. Soc. 129, 14710–14716 (2007).


Google Scholar
 

Zhu, H., Wang, Y., Fan, Y., Xu, J. & Yang, C. Structure and transport properties of water and hydrated ions in nano-confined channels. Adv. Theory Simul. 2, 1900016 (2019).


Google Scholar
 

Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

ADS 

Google Scholar
 

Razmjou, A., Asadnia, M., Hosseini, E., Habibnejad Korayem, A. & Chen, V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun. 10, 5793 (2019).

ADS 

Google Scholar
 

Goutham, S. et al. Beyond steric selectivity of ions using ångström-scale capillaries. Nat. Nanotechnol. 18, 596–601 (2023).

ADS 

Google Scholar
 

Kumar, M., Grzelakowski, M., Zilles, J., Clark, M. & Meier, W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl Acad. Sci. USA 104, 20719–20724 (2007).

ADS 

Google Scholar
 

Noskov, S. Y., Berneche, S. & Roux, B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004).

ADS 

Google Scholar
 

He, Z., Zhou, J., Lu, X. & Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 7, 10148–10157 (2013).


Google Scholar
 

Zhao, S., Xue, J. & Kang, W. Ion selection of charge-modified large nanopores in a graphene sheet. J. Chem. Phys. 139, 114702 (2013).

ADS 

Google Scholar
 

Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

ADS 

Google Scholar
 

Majumder, M., Chopra, N. & Hinds, B. J. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 127, 9062–9070 (2005).


Google Scholar
 

Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

ADS 

Google Scholar
 

Chan, W.-F. et al. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 7, 5308–5319 (2013).


Google Scholar
 

Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

ADS 

Google Scholar
 

Jalali, H. et al. Out-of-plane permittivity of confined water. Phys. Rev. E 102, 022803 (2020).

ADS 

Google Scholar
 

Sugahara, A. et al. Negative dielectric constant of water confined in nanosheets. Nat. Commun. 10, 850 (2019).

ADS 

Google Scholar
 

Jalali, H., Khoeini, F., Peeters, F. M. & Neek-Amal, M. Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes. Nanoscale 13, 922–929 (2021).


Google Scholar
 

Liang, X. et al. Formation of compounds with diverse polyelectrolyte morphologies and nonlinear ion conductance in a two-dimensional nanofluidic channel. Chem. Sci. 15, 8170–8180 (2024).


Google Scholar
 

Zhao, W. et al. Two-dimensional monolayer salt nanostructures can spontaneously aggregate rather than dissolve in dilute aqueous solutions. Nat. Commun. 12, 5602 (2021).

ADS 

Google Scholar
 

Zhao, W. et al. Evidence of formation of monolayer hydrated salts in nanopores. J. Am. Chem. Soc. 144, 18976–18985 (2022).


Google Scholar
 

Robin, P., Kavokine, N. & Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 373, 687–691 (2021).

ADS 
MathSciNet 

Google Scholar
 

Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).

ADS 

Google Scholar
 

Xiong, T. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379, 156–161 (2023).

ADS 

Google Scholar
 

Babin, V., Medders, G. R. & Paesani, F. Toward a universal water model: first principles simulations from the dimer to the liquid phase. J. Phys. Chem. Lett. 3, 3765–3769 (2012).


Google Scholar
 

Behler, J. Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).

ADS 

Google Scholar
 

Yu, Q. et al. A status report on ‘gold standard’ machine-learned potentials for water. J. Phys. Chem. Lett. 14, 8077–8087 (2023).


Google Scholar
 

Trachenko, K. & Brazhkin, V. V. The quantum mechanics of viscosity. Phys. Today 74, 66–67 (2021).

ADS 

Google Scholar
 

Chiang, K.-Y., Hunger, J., Bonn, M. & Nagata, Y. Experimental quantification of nuclear quantum effects on the hydrogen bond of liquid water. Sci. Adv. 11, eadv7218 (2025).


Google Scholar
 

Su, J. & Guo, H. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 5, 351–359 (2011).


Google Scholar
 

Montenegro, A. et al. Asymmetric response of interfacial water to applied electric fields. Nature 594, 62–65 (2021).

ADS 

Google Scholar
 

Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).

ADS 
MathSciNet 

Google Scholar
 

Moid, M., Finkelstein, Y., Moreh, R. & Maiti, P. K. Anisotropy of the proton kinetic energy as a tool for capturing structural transition in water confined in a graphene nanoslit pore. J. Phys. Chem. Lett. 13, 455–461 (2022).


Google Scholar
 

Moid, M., Finkelstein, Y., Moreh, R. & Maiti, P. K. Microscopic study of proton kinetic energy anomaly for nanoconfined water. J. Phys. Chem. B 124, 190–198 (2019).


Google Scholar
 

Amann-Winkel, K. et al. Water’s second glass transition. Proc. Natl Acad. Sci. USA 110, 17720–17725 (2013).

ADS 

Google Scholar
 

Berthier, L., Charbonneau, P., Ninarello, A., Ozawa, M. & Yaida, S. Zero-temperature glass transition in two dimensions. Nat. Commun. 10, 1508 (2019).

ADS 

Google Scholar
 

Moid, M., Sastry, S., Dasgupta, C., Pascal, T. A. & Maiti, P. K. Dimensionality dependence of the Kauzmann temperature: a case study using bulk and confined water. J. Chem. Phys. 154, 164510 (2021).

ADS 

Google Scholar
 

Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

ADS 

Google Scholar
 

Sui, H., Han, B.-G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

ADS 

Google Scholar
 

Siwy, Z. & Fornasiero, F. Improving on aquaporins. Science 357, 753 (2017).


Google Scholar
 

Shen, J. et al. Fluorofoldamer-based salt- and proton-rejecting artificial water channels for ultrafast water transport. Nano Lett. 22, 4831–4838 (2022).

ADS 

Google Scholar
 

Yang, K. et al. Graphene/chitosan nanoreactors for ultrafast and precise recovery and catalytic conversion of gold from electronic waste. Proc. Natl Acad. Sci. USA 121, e2414449121 (2024).


Google Scholar
 

Chen, S. et al. Ultra-tough graphene oxide/DNA 2D hydrogel with intrinsic sensing and actuation functions. Macromol. Rapid Commun. 46, 2400518 (2025).


Google Scholar
 

Yang, K. et al. Electro-thermo controlled water valve based on 2D graphene–cellulose hydrogels. Adv. Funct. Mater. 32, 2201904 (2022).


Google Scholar
 

Bong, J. H. et al. Graphene oxide–DNA/graphene oxide–PDDA sandwiched membranes with neuromorphic function. Nanoscale Horiz. 9, 863–872 (2024).

ADS 

Google Scholar
 

Yang, K., Wang, Q., Novoselov, K. S. & Andreeva, D. V. A nanofluidic sensing platform based on robust and flexible graphene oxide/chitosan nanochannel membranes for glucose and urea detection. Nanoscale Horiz. 8, 1243–1252 (2023).

ADS 

Google Scholar
 

Yang, K. et al. Graphene oxide–polyamine preprogrammable nanoreactors with sensing capability for corrosion protection of materials. Proc. Natl Acad. Sci. USA 120, e2307618120 (2023).


Google Scholar
 

Andreeva, D. V. et al. Two-dimensional adaptive membranes with programmable water and ionic channels. Nat. Nanotechnol. 16, 174–180 (2021).

ADS 

Google Scholar
 

Baran, Ł., Rżysko, W. & MacDowell, L. G. Self-diffusion and shear viscosity for the TIP4P/ice water model. J. Chem. Phys. 158, 064503 (2023).

ADS 

Google Scholar
 

Abramson, E. H. Viscosity of water measured to pressures of 6 GPa and temperatures of 300 °C. Phys. Rev. E 76, 051203 (2007).

ADS 

Google Scholar
 

Guillaud, E., Merabia, S., de Ligny, D. & Joly, L. Decoupling of viscosity and relaxation processes in supercooled water: a molecular dynamics study with the TIP4P/2005f model. Phys. Chem. Chem. Phys. 19, 2124–2130 (2017).


Google Scholar
 

Singh, L. P., Issenmann, B. & Caupin, F. Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water. Proc. Natl Acad. Sci. USA 114, 4312–4317 (2017).

ADS 

Google Scholar
 

Hallett, J. The temperature dependence of the viscosity of supercooled water. Proc. Phys. Soc. 82, 1046 (1963).

ADS 

Google Scholar
 

Leng, Y. & Cummings, P. T. Fluidity of hydration layers nanoconfined between mica surfaces. Phys. Rev. Lett. 94, 026101 (2005).

ADS 

Google Scholar
 

Sotin, C. & Poirier, J. Viscosity of ice V. J. Phys. Colloq. 48, C1–C233 (1987).


Google Scholar
 

Deeley, R. The viscosity of ice. Proc. R. Soc. Lond. Ser. A 81, 250–259 (1908).

ADS 

Google Scholar
 

Yen, F. & Chi, Z. Proton ordering dynamics of H2O ice. Phys. Chem. Chem. Phys. 17, 12458–12461 (2015).


Google Scholar
 

Bocquet, L. & Barrat, J.-L. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49, 3079 (1994).

ADS 

Google Scholar
 

Maginn, E. J., Messerly, R. A., Carlson, D. J., Roe, D. R. & Elliot, J. R. Best practices for computing transport properties 1. Self-diffusivity and viscosity from equilibrium molecular dynamics [Article v1. 0]. Living J. Comput. Mol. Sci. 1, 6324 (2019).


Google Scholar
 

Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936).

ADS 

Google Scholar
 

Mathas, D. et al. Evaluation of methods for viscosity simulations of lubricants at different temperatures and pressures: a case study on PAO-2. Tribol. Trans. 64, 1138–1148 (2021).


Google Scholar
 

Kadaoluwa Pathirannahalage, S. P. et al. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. J. Chem. Inf. Model 61, 4521–4536 (2021).


Google Scholar
 

Barker, J. A. & Watts, R. O. Structure of water; a Monte Carlo calculation. Chem. Phys. Lett. 3, 144–145 (1969).

ADS 

Google Scholar
 

Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).

ADS 

Google Scholar
 

Izadi, S. & Onufriev, A. V. Accuracy limit of rigid 3-point water models. J. Chem. Phys. 145, 074501 (2016).

ADS 

Google Scholar