Rousseau, D. L. & Porto, S. Polywater: polymer or artifact? Science 167, 1715–1719 (1970).
Derjaguin, B. Polywater reviewed. Nature 301, 9–10 (1983).
Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).
Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005).
Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).
Köfinger, J., Hummer, G. & Dellago, C. Macroscopically ordered water in nanopores. Proc. Natl Acad. Sci. USA 105, 13218–13222 (2008).
Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).
Bampoulis, P., Lohse, D., Zandvliet, H. J. & Poelsema, B. Coarsening dynamics of ice crystals intercalated between graphene and supporting mica. Appl. Phys. Lett. 108, 011601 (2016).
Severin, N., Lange, P., Sokolov, I. M. & Rabe, J. P. Reversible dewetting of a molecularly thin fluid water film in a soft graphene–mica slit pore. Nano Lett. 12, 774–779 (2012).
Kim, J.-S. et al. Between scylla and charybdis: hydrophobic graphene-guided water diffusion on hydrophilic substrates. Sci. Rep. 3, 2309 (2013).
Song, J. et al. Evidence of Stranski–Krastanov growth at the initial stage of atmospheric water condensation. Nat. Commun. 5, 4837 (2014).
Zhou, W. et al. The observation of square ice in graphene questioned. Nature 528, E1–E2 (2015).
Sobrino Fernandez, M., Neek-Amal, M. & Peeters, F. M. AA-stacked bilayer square ice between graphene layers. Phys. Rev. B 92, 245428 (2015).
Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).
Emmerich, T. et al. Nanofluidics. Nat Rev Methods Primers 4, 69 (2024).
Boya, R., Keerthi, A. & Parambath, M. S. The wonderland of angstrofluidics. Phys. Today 77, 26–33 (2024).
Cui, B. et al. Low-dimensional and confined ice. Annu. Rev. Mater. Res. 53, 371–397 (2023).
Takaiwa, D., Hatano, I., Koga, K. & Tanaka, H. Phase diagram of water in carbon nanotubes. Proc. Natl Acad. Sci. USA 105, 39–43 (2008).
Zangi, R. & Mark, A. E. Monolayer ice. Phys. Rev. Lett. 91, 025502 (2003).
Maniwa, Y. et al. Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 401, 534–538 (2005).
Agrawal, K. V., Shimizu, S., Drahushuk, L. W., Kilcoyne, D. & Strano, M. S. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat. Nanotechnol. 12, 267 (2017).
Kolesnikov, A. I. et al. Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93, 035503 (2004).
Kapil, V. et al. The first-principles phase diagram of monolayer nanoconfined water. Nature 609, 512–516 (2022).
Lin, B., Jiang, J., Zeng, X. C. & Li, L. Temperature–pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field. Nat. Commun. 14, 4110 (2023).
Vasu, K. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 7, 12168 (2016).
Giovambattista, N., Rossky, P. J. & Debenedetti, P. G. Phase transitions induced by nanoconfinement in liquid water. Phys. Rev. Lett. 102, 050603 (2009).
Giovambattista, N., Rossky, P. J. & Debenedetti, P. G. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys. Rev. E 73, 041604 (2006).
Negi, S., Carvalho, A., Trushin, M. & Neto, A. C. Edge-driven phase transitions in 2d ice. J. Phys. Chem. C 126, 16006–16015 (2022).
Raju, M., Van Duin, A. & Ihme, M. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes. Sci. Rep. 8, 3851 (2018).
Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).
Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).
Hanasaki, I. & Nakatani, A. Flow structure of water in carbon nanotubes: Poiseuille type or plug-like? J. Chem. Phys. 124, 144708 (2006).
Neek-Amal, M. et al. Fast water flow through graphene nanocapillaries: a continuum model approach involving the microscopic structure of confined water. Appl. Phys. Lett. 113, 083101 (2018).
Keerthi, A. et al. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12, 3092 (2021).
Thomas, J. A. & McGaughey, A. J. Reassessing fast water transport through carbon nanotubes. Nano Lett. 8, 2788–2793 (2008).
Neek-Amal, M., Peeters, F. M., Grigorieva, I. V. & Geim, A. K. Commensurability effects in viscosity of nanoconfined water. ACS Nano 10, 3685–3692 (2016).
Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).
Wu, D. et al. Probing structural superlubricity of two-dimensional water transport with atomic resolution. Science 384, 1254–1259 (2024).
Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).
Aluru, N. R. et al. Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).
Gao, J., Feng, Y., Guo, W. & Jiang, L. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem. Soc. Rev. 46, 5400–5424 (2017).
Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).
Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).
Kobayashi, H., Hiki, Y. & Takahashi, H. An experimental study on the shear viscosity of solids. J. Appl. Phys. 80, 122–130 (1996).
Modig, K., Pfrommer, B. G. & Halle, B. Temperature-dependent hydrogen-bond geometry in liquid water. Phys. Rev. Lett. 90, 075502 (2003).
Muthachikavil, A. V., Peng, B., Kontogeorgis, G. M. & Liang, X. Distinguishing weak and strong hydrogen bonds in liquid water — a potential of mean force-based approach. J. Phys. Chem. B 125, 7187–7198 (2021).
Martiniano, H. & Galamba, N. Insights on hydrogen-bond lifetimes in liquid and supercooled water. J. Phys. Chem. B 117, 16188–16195 (2013).
Zhao, W.-H. et al. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates. Acc. Chem. Res. 47, 2505–2513 (2014).
Trushin, M., Carvalho, A. & Castro Neto, A. Two-dimensional non-linear hydrodynamics and nanofluidics. Commun. Phys. 6, 162 (2023).
Biggs, C. M. & Oatley-Radcliffe, D. L. Proposing a plausible molecular structure for Ice XI: a coupled study using Rietveld refinement and density functional theory. Chem. Phys. 579, 112200 (2024).
Z˘ivković, A., Terranova, U. & de Leeuw, N. H. Water is cool: advanced phonon dynamics in Ice Ih and Ice XI via machine learning potentials and quantum nuclear vibrations. J. Chem. Theory Comput. 21, 1978–1989 (2025).
Qin, X., Yuan, Q., Zhao, Y., Xie, S. & Liu, Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 11, 2173–2177 (2011).
Kannam, S. K., Todd, B., Hansen, J. S. & Daivis, P. J. How fast does water flow in carbon nanotubes? J. Chem. Phys. 138, 094701 (2013).
Majumder, M., Chopra, N. & Hinds, B. J. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011).
Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).
Chen, X. et al. Nanoscale fluid transport: size and rate effects. Nano Lett. 8, 2988–2992 (2008).
Ye, H., Zhang, H., Zhang, Z. & Zheng, Y. Size and temperature effects on the viscosity of water inside carbon nanotubes. Nanoscale Res. Lett. 6, 87 (2011).
Zhang, H., Ye, H., Zheng, Y. & Zhang, Z. Prediction of the viscosity of water confined in carbon nanotubes. Microfluid. Nanofluid. 10, 403–414 (2011).
Babu, J. S. & Sathian, S. P. The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes. J. Chem. Phys. 134, 194509 (2011).
Myers, T. G. Why are slip lengths so large in carbon nanotubes? Microfluid. Nanofluid. 10, 1141–1145 (2011).
Liu, Y., Wang, Q., Wu, T. & Zhang, L. Fluid structure and transport properties of water inside carbon nanotubes. J. Chem. Phys. 123, 234701 (2005).
Teske, V., Vogel, E. & Bich, E. Viscosity measurements on water vapor and their evaluation. J. Chem. Eng. Data 50, 2082–2087 (2005).
Hellmann, R. & Vogel, E. The viscosity of dilute water vapor revisited: new reference values from experiment and theory for temperatures between (250 and 2500) K. J. Chem. Eng. Data 60, 3600–3605 (2015).
Korson, L., Drost-Hansen, W. & Millero, F. J. Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969).
Jaeger, F., Matar, O. K. & Müller, E. A. Bulk viscosity of molecular fluids. J. Phys. Chem. 148, 174504 (2018).
Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).
Zaragoza, A. et al. Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity. Phys. Chem. Chem. Phys. 21, 13653–13667 (2019).
Corsetti, F., Matthews, P. & Artacho, E. Structural and configurational properties of nanoconfined monolayer ice from first principles. Sci. Rep. 6, 18651 (2016).
Dehaoui, A., Issenmann, B. & Caupin, F. Viscosity of deeply supercooled water and its coupling to molecular diffusion. Proc. Natl Acad. Sci. USA 112, 12020–12025 (2015).
Cerveny, S., Mallamace, F., Swenson, J., Vogel, M. & Xu, L. Confined water as model of supercooled water. Chem. Rev. 116, 7608–7625 (2016).
Schiller, V. & Vogel, M. Ice-water equilibrium in nanoscale confinement. Phys. Rev. Lett. 132, 016201 (2024).
Baran, Ł., Llombart, P., Rżysko, W. & MacDowell, L. G. Ice friction at the nanoscale. Proc. Natl Acad. Sci. USA 119, e2209545119 (2022).
Zhao, Y., Wu, Y., Bao, L., Zhou, F. & Liu, W. A new mechanism of the interfacial water film dominating low ice friction. J. Chem. Phys. 157, 234703 (2022).
Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z. & Salmeron, M. The premelting of ice studied with photoelectron spectroscopy. J. Phys. Condens. Matter 14, L227 (2002).
Louden, P. B. & Gezelter, J. D. Why is ice slippery? Simulations of shear viscosity of the quasi-liquid layer on ice. J. Phys. Chem. Lett. 9, 3686–3691 (2018).
Liefferink, R. W., Hsia, F.-C., Weber, B. & Bonn, D. Friction on ice: how temperature, pressure, and speed control the slipperiness of ice. Phys. Rev. X 11, 011025 (2021).
Ma, N. et al. Continuous and first-order liquid–solid phase transitions in two-dimensional water. J. Phys. Chem. B 126, 8892–8899 (2022).
Han, S., Choi, M., Kumar, P. & Stanley, H. E. Phase transitions in confined water nanofilms. Nat. Phys. 6, 685–689 (2010).
Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics: Fluid Mechanics Vol. 6 (Pergamon, 1987).
Kavokine, N., Netz, R. R. & Bocquet, L. Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53, 377–410 (2021).
Gao, Z., Giovambattista, N. & Sahin, O. Phase diagram of water confined by graphene. Sci. Rep. 8, 6228 (2018).
Qiu, H., Zeng, X. C. & Guo, W. Water in inhomogeneous nanoconfinement: coexistence of multilayered liquid and transition to ice nanoribbons. ACS Nano 9, 9877–9884 (2015).
Sobrino Fernandez, M., Peeters, F. M. & Neek-Amal, M. Electric-field-induced structural changes in water confined between two graphene layers. Phys. Rev. B 94, 045436 (2016).
Zubeltzu, J. & Artacho, E. Simulations of water nano-confined between corrugated planes. J. Chem. Phys. 147, 194509 (2017).
Chen, J., Schusteritsch, G., Pickard, C. J., Salzmann, C. G. & Michaelides, A. Two dimensional ice from first principles: structures and phase transitions. Phys. Rev. Lett. 116, 025501 (2016).
Corsetti, F., Zubeltzu, J. & Artacho, E. Enhanced configurational entropy in high-density nanoconfined bilayer ice. Phys. Rev. Lett. 116, 085901 (2016).
Ghorbanfekr, H., Behler, J. & Peeters, F. M. Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations. J. Phys. Chem. Lett. 11, 7363–7370 (2020).
Kalashami, H., Neek-Amal, M. & Peeters, F. Slippage dynamics of confined water in graphene oxide capillaries. Phys. Rev. Mater. 2, 074004 (2018).
Thomas, J. A., McGaughey, A. J. & Kuter-Arnebeck, O. Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation. Int. J. Therm. Sci. 49, 281–289 (2010).
Calabrò, F., Lee, K. & Mattia, D. Modelling flow enhancement in nanochannels: viscosity and slippage. Appl. Math. Lett. 26, 991–994 (2013).
Whitby, M., Cagnon, L., Thanou, M. & Quirke, N. Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8, 2632–2637 (2008).
Kotsalis, E., Walther, J. H. & Koumoutsakos, P. Multiphase water flow inside carbon nanotubes. Int. J. Multiph. Flow 30, 995–1010 (2004).
Kumar Kannam, S., Todd, B. D., Hansen, J. S. & Daivis, P. J. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J. Chem. Phys. 136, 024705 (2012).
Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).
Ramos-Alvarado, B., Kumar, S. & Peterson, G. Hydrodynamic slip length as a surface property. Phys. Rev. E 93, 023101 (2016).
Wei, N., Peng, X. & Xu, Z. Breakdown of fast water transport in graphene oxides. Phys. Rev. E 89, 012113 (2014).
Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).
Xie, Q. et al. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238–245 (2018).
Sam, A. et al. Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges. Mol. Simul. 47, 905–924 (2021).
Yang, L., Guo, Y. & Diao, D. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement. Phys. Chem. Chem. Phys. 19, 14048–14054 (2017).
Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).
Nigues, A., Siria, A., Vincent, P., Poncharal, P. & Bocquet, L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater. 13, 688–693 (2014).
Richards, L. A., Schäfer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).
Babu, C. S. & Lim, C. Theory of ionic hydration: insights from molecular dynamics simulations and experiment. J. Phys. Chem. B 103, 7958–7968 (1999).
Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).
Zwolak, M., Lagerqvist, J. & Di Ventra, M. Quantized ionic conductance in nanopores. Phys. Rev. Lett. 103, 128102 (2009).
Ball, P. Water — an enduring mystery. Nature 452, 291–292 (2008).
Hua, L., Huang, X., Liu, P., Zhou, R. & Berne, B. J. Nanoscale dewetting transition in protein complex folding. J. Phys. Chem. B 111, 9069–9077 (2007).
Cui, S., Yu, J., Kühner, F., Schulten, K. & Gaub, H. E. Double-stranded DNA dissociates into single strands when dragged into a poor solvent. J. Am. Chem. Soc. 129, 14710–14716 (2007).
Zhu, H., Wang, Y., Fan, Y., Xu, J. & Yang, C. Structure and transport properties of water and hydrated ions in nano-confined channels. Adv. Theory Simul. 2, 1900016 (2019).
Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).
Razmjou, A., Asadnia, M., Hosseini, E., Habibnejad Korayem, A. & Chen, V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun. 10, 5793 (2019).
Goutham, S. et al. Beyond steric selectivity of ions using ångström-scale capillaries. Nat. Nanotechnol. 18, 596–601 (2023).
Kumar, M., Grzelakowski, M., Zilles, J., Clark, M. & Meier, W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl Acad. Sci. USA 104, 20719–20724 (2007).
Noskov, S. Y., Berneche, S. & Roux, B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004).
He, Z., Zhou, J., Lu, X. & Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 7, 10148–10157 (2013).
Zhao, S., Xue, J. & Kang, W. Ion selection of charge-modified large nanopores in a graphene sheet. J. Chem. Phys. 139, 114702 (2013).
Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).
Majumder, M., Chopra, N. & Hinds, B. J. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 127, 9062–9070 (2005).
Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).
Chan, W.-F. et al. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 7, 5308–5319 (2013).
Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).
Jalali, H. et al. Out-of-plane permittivity of confined water. Phys. Rev. E 102, 022803 (2020).
Sugahara, A. et al. Negative dielectric constant of water confined in nanosheets. Nat. Commun. 10, 850 (2019).
Jalali, H., Khoeini, F., Peeters, F. M. & Neek-Amal, M. Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes. Nanoscale 13, 922–929 (2021).
Liang, X. et al. Formation of compounds with diverse polyelectrolyte morphologies and nonlinear ion conductance in a two-dimensional nanofluidic channel. Chem. Sci. 15, 8170–8180 (2024).
Zhao, W. et al. Two-dimensional monolayer salt nanostructures can spontaneously aggregate rather than dissolve in dilute aqueous solutions. Nat. Commun. 12, 5602 (2021).
Zhao, W. et al. Evidence of formation of monolayer hydrated salts in nanopores. J. Am. Chem. Soc. 144, 18976–18985 (2022).
Robin, P., Kavokine, N. & Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 373, 687–691 (2021).
Robin, P. et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).
Xiong, T. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 379, 156–161 (2023).
Babin, V., Medders, G. R. & Paesani, F. Toward a universal water model: first principles simulations from the dimer to the liquid phase. J. Phys. Chem. Lett. 3, 3765–3769 (2012).
Behler, J. Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).
Yu, Q. et al. A status report on ‘gold standard’ machine-learned potentials for water. J. Phys. Chem. Lett. 14, 8077–8087 (2023).
Trachenko, K. & Brazhkin, V. V. The quantum mechanics of viscosity. Phys. Today 74, 66–67 (2021).
Chiang, K.-Y., Hunger, J., Bonn, M. & Nagata, Y. Experimental quantification of nuclear quantum effects on the hydrogen bond of liquid water. Sci. Adv. 11, eadv7218 (2025).
Su, J. & Guo, H. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 5, 351–359 (2011).
Montenegro, A. et al. Asymmetric response of interfacial water to applied electric fields. Nature 594, 62–65 (2021).
Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).
Moid, M., Finkelstein, Y., Moreh, R. & Maiti, P. K. Anisotropy of the proton kinetic energy as a tool for capturing structural transition in water confined in a graphene nanoslit pore. J. Phys. Chem. Lett. 13, 455–461 (2022).
Moid, M., Finkelstein, Y., Moreh, R. & Maiti, P. K. Microscopic study of proton kinetic energy anomaly for nanoconfined water. J. Phys. Chem. B 124, 190–198 (2019).
Amann-Winkel, K. et al. Water’s second glass transition. Proc. Natl Acad. Sci. USA 110, 17720–17725 (2013).
Berthier, L., Charbonneau, P., Ninarello, A., Ozawa, M. & Yaida, S. Zero-temperature glass transition in two dimensions. Nat. Commun. 10, 1508 (2019).
Moid, M., Sastry, S., Dasgupta, C., Pascal, T. A. & Maiti, P. K. Dimensionality dependence of the Kauzmann temperature: a case study using bulk and confined water. J. Chem. Phys. 154, 164510 (2021).
Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).
Sui, H., Han, B.-G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).
Siwy, Z. & Fornasiero, F. Improving on aquaporins. Science 357, 753 (2017).
Shen, J. et al. Fluorofoldamer-based salt- and proton-rejecting artificial water channels for ultrafast water transport. Nano Lett. 22, 4831–4838 (2022).
Yang, K. et al. Graphene/chitosan nanoreactors for ultrafast and precise recovery and catalytic conversion of gold from electronic waste. Proc. Natl Acad. Sci. USA 121, e2414449121 (2024).
Chen, S. et al. Ultra-tough graphene oxide/DNA 2D hydrogel with intrinsic sensing and actuation functions. Macromol. Rapid Commun. 46, 2400518 (2025).
Yang, K. et al. Electro-thermo controlled water valve based on 2D graphene–cellulose hydrogels. Adv. Funct. Mater. 32, 2201904 (2022).
Bong, J. H. et al. Graphene oxide–DNA/graphene oxide–PDDA sandwiched membranes with neuromorphic function. Nanoscale Horiz. 9, 863–872 (2024).
Yang, K., Wang, Q., Novoselov, K. S. & Andreeva, D. V. A nanofluidic sensing platform based on robust and flexible graphene oxide/chitosan nanochannel membranes for glucose and urea detection. Nanoscale Horiz. 8, 1243–1252 (2023).
Yang, K. et al. Graphene oxide–polyamine preprogrammable nanoreactors with sensing capability for corrosion protection of materials. Proc. Natl Acad. Sci. USA 120, e2307618120 (2023).
Andreeva, D. V. et al. Two-dimensional adaptive membranes with programmable water and ionic channels. Nat. Nanotechnol. 16, 174–180 (2021).
Baran, Ł., Rżysko, W. & MacDowell, L. G. Self-diffusion and shear viscosity for the TIP4P/ice water model. J. Chem. Phys. 158, 064503 (2023).
Abramson, E. H. Viscosity of water measured to pressures of 6 GPa and temperatures of 300 °C. Phys. Rev. E 76, 051203 (2007).
Guillaud, E., Merabia, S., de Ligny, D. & Joly, L. Decoupling of viscosity and relaxation processes in supercooled water: a molecular dynamics study with the TIP4P/2005f model. Phys. Chem. Chem. Phys. 19, 2124–2130 (2017).
Singh, L. P., Issenmann, B. & Caupin, F. Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water. Proc. Natl Acad. Sci. USA 114, 4312–4317 (2017).
Hallett, J. The temperature dependence of the viscosity of supercooled water. Proc. Phys. Soc. 82, 1046 (1963).
Leng, Y. & Cummings, P. T. Fluidity of hydration layers nanoconfined between mica surfaces. Phys. Rev. Lett. 94, 026101 (2005).
Sotin, C. & Poirier, J. Viscosity of ice V. J. Phys. Colloq. 48, C1–C233 (1987).
Deeley, R. The viscosity of ice. Proc. R. Soc. Lond. Ser. A 81, 250–259 (1908).
Yen, F. & Chi, Z. Proton ordering dynamics of H2O ice. Phys. Chem. Chem. Phys. 17, 12458–12461 (2015).
Bocquet, L. & Barrat, J.-L. Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49, 3079 (1994).
Maginn, E. J., Messerly, R. A., Carlson, D. J., Roe, D. R. & Elliot, J. R. Best practices for computing transport properties 1. Self-diffusivity and viscosity from equilibrium molecular dynamics [Article v1. 0]. Living J. Comput. Mol. Sci. 1, 6324 (2019).
Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936).
Mathas, D. et al. Evaluation of methods for viscosity simulations of lubricants at different temperatures and pressures: a case study on PAO-2. Tribol. Trans. 64, 1138–1148 (2021).
Kadaoluwa Pathirannahalage, S. P. et al. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. J. Chem. Inf. Model 61, 4521–4536 (2021).
Barker, J. A. & Watts, R. O. Structure of water; a Monte Carlo calculation. Chem. Phys. Lett. 3, 144–145 (1969).
Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).
Izadi, S. & Onufriev, A. V. Accuracy limit of rigid 3-point water models. J. Chem. Phys. 145, 074501 (2016).