Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Philos. Trans. A Math. Phys. Eng. Sci. 361, 1655–1674 (2003).

PubMed 

Google Scholar
 

O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).


Google Scholar
 

Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

CAS 

Google Scholar
 

Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).


Google Scholar
 

Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

Ralph, T. C. & Pryde, G. J. Optical quantum computation. Prog. Opt. 54, 209–269 (2010).


Google Scholar
 

Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

CAS 
PubMed 

Google Scholar
 

Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

CAS 
PubMed 

Google Scholar
 

Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981).

CAS 

Google Scholar
 

Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992).


Google Scholar
 

Xiao, M., Wu, L.-A. & Kimble, H. J. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278–281 (1987).

CAS 
PubMed 

Google Scholar
 

Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

CAS 

Google Scholar
 

Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

CAS 
PubMed 

Google Scholar
 

O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003).

PubMed 

Google Scholar
 

Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

CAS 
PubMed 

Google Scholar
 

Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

CAS 
PubMed 

Google Scholar
 

Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).

CAS 
PubMed 

Google Scholar
 

Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

CAS 

Google Scholar
 

Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).


Google Scholar
 

Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).


Google Scholar
 

Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

CAS 
PubMed 

Google Scholar
 

Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

CAS 

Google Scholar
 

Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

CAS 
PubMed 

Google Scholar
 

Wang, X.-L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).

PubMed 

Google Scholar
 

Mosley, P. J. et al. Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008).

PubMed 

Google Scholar
 

Takeuchi, S. Beamlike twin-photon generation by use of type II parametric downconversion. Opt. Lett. 26, 843–845 (2001).

CAS 
PubMed 

Google Scholar
 

Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

PubMed 

Google Scholar
 

Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014).

CAS 

Google Scholar
 

Paesani, S. et al. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11, 2505 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pittman, T., Jacobs, B. & Franson, J. Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66, 042303 (2002).


Google Scholar
 

Migdall, A. L., Branning, D. & Castelletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).


Google Scholar
 

Kaneda, F. & Kwiat, P. G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5, eaaw8586 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Najer, D. et al. A gated quantum dot strongly coupled to an optical microcavity. Nature 575, 622–627 (2019).

CAS 
PubMed 

Google Scholar
 

He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

CAS 
PubMed 

Google Scholar
 

Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

CAS 

Google Scholar
 

Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

CAS 
PubMed 

Google Scholar
 

Ding, X. et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photon. 19, 387–391 (2025).

CAS 

Google Scholar
 

Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

CAS 

Google Scholar
 

Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).

CAS 
PubMed 

Google Scholar
 

Lindner, N. H. & Rudolph, T. A photonic cluster state machine gun. Phys. Rev. Lett. 103, 113602 (2009).

PubMed 

Google Scholar
 

Vahlbruch, H., Mehmet, M., Danzmann, K. & Schnabel, R. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016).

PubMed 

Google Scholar
 

Dodd, J. L., Ralph, T. C. & Milburn, G. J. Experimental requirements for Grover’s algorithm in optical quantum computation. Phys. Rev. A 68, 042328 (2003).


Google Scholar
 

Procopio, L. M. et al. Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Weston, M. M. et al. Quantum channel correction outperforming direct transmission. Nat. Commun. 13, 1832 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

CAS 
PubMed 

Google Scholar
 

Jin, R.-B. et al. Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength. Opt. Express 22, 11498–11507 (2014).

CAS 
PubMed 

Google Scholar
 

Marcikic, I. et al. Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308 (2002).


Google Scholar
 

Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P. & Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7, 378–381 (2013).

CAS 

Google Scholar
 

Xiong, C. et al. Active temporal multiplexing of indistinguishable heralded single photons. Nat. Commun. 7, 10853 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, H. et al. Boson sampling with 20 input photons in 60-mode interferometers at 1014 state spaces. Phys. Rev. Lett. 123, 250503 (2019).

CAS 
PubMed 

Google Scholar
 

Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

CAS 

Google Scholar
 

Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).


Google Scholar
 

Jeffrey, T. & Hull, D. Integrated Photonics (OP-TEC, Univ. Central Florida, 2016)

Silverstone, J. W., Bonneau, D., O’Brien, J. L. & Thompson, M. G. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).


Google Scholar
 

Roeloffzen, C. G. H. et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).


Google Scholar
 

Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev. 10, 870–894 (2016).

CAS 

Google Scholar
 

Lukin, D. M., Guidry, M. A. & Vuckovic, J. Integrated quantum photonics with silicon carbide: challenges and prospects. PRX Quantum 1, 020102 (2020).


Google Scholar
 

Meany, T. et al. Laser written circuits for quantum photonics. Laser Photonics Rev. 9, 363–384 (2015).

CAS 

Google Scholar
 

Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242–352 (2021).


Google Scholar
 

Gol’tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).


Google Scholar
 

Rosfjord, K. M. et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 14, 527–534 (2001).


Google Scholar
 

Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649–1653 (2020).


Google Scholar
 

Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photon. 14, 250–255 (2020).

CAS 

Google Scholar
 

Andrews, D. H., Brucksch, W. F. Jr., Ziegler, W. T. & Blanchard, E. R. Attenuated superconductors I. For measuring infra-red radiation. Rev. Sci. Instrum. 13, 281–292 (1942).


Google Scholar
 

Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008).

PubMed 

Google Scholar
 

Schuck, C., Pernice, W. H. P. & Tang, H. X. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate. Sci. Rep. 3, 1893 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Sahin, D. et al. Waveguide photon-number-resolving detectors for quantum photonic integrated circuits. Appl. Phys. Lett. 103, 111116 (2013).


Google Scholar
 

Höpker, J. P. et al. Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides. APL Photonics 4, 056103 (2019).


Google Scholar
 

Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012).

CAS 
PubMed 

Google Scholar
 

Cheng, R. et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photon. 17, 112–119 (2023).

CAS 

Google Scholar
 

Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In International Conference on Computers, Systems & Signal Processing 175–179 (Theoretical Computer Science, 1984).

Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

CAS 
PubMed 

Google Scholar
 

Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

CAS 
PubMed 

Google Scholar
 

Bennett, C. H. & Brassard, G. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. ACM SIGACT News 20, 78–80 (1989).


Google Scholar
 

Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

PubMed 

Google Scholar
 

Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

PubMed 

Google Scholar
 

Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

CAS 
PubMed 

Google Scholar
 

Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

CAS 
PubMed 

Google Scholar
 

Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

PubMed 

Google Scholar
 

Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

PubMed 

Google Scholar
 

Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

CAS 
PubMed 

Google Scholar
 

Wang, S. et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16, 154–161 (2022).


Google Scholar
 

Chen, J.-P. et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15, 570–575 (2021).

CAS 

Google Scholar
 

Pittaluga, M. et al. Long-distance coherent quantum communications in deployed telecom networks. Nature 640, 911–917 (2025).

CAS 
PubMed 

Google Scholar
 

Grosshans, F. & Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002).

PubMed 

Google Scholar
 

Weedbrook, C. et al. Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004).

PubMed 

Google Scholar
 

Zhang, Y. et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125, 010502 (2020).

CAS 
PubMed 

Google Scholar
 

Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

CAS 

Google Scholar
 

Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

CAS 

Google Scholar
 

Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

CAS 
PubMed 

Google Scholar
 

Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

CAS 

Google Scholar
 

Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

CAS 
PubMed 

Google Scholar
 

Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).

CAS 
PubMed 

Google Scholar
 

Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

CAS 
PubMed 

Google Scholar
 

Liu, J.-L. et al. Creation of memory–memory entanglement in a metropolitan quantum network. Nature 629, 579–585 (2024).

CAS 
PubMed 

Google Scholar
 

Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature 629, 573–578 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stolk, A. J. et al. Metropolitan-scale heralded entanglement of solid-state qubits. Sci. Adv. 10, eadp6442 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

CAS 
PubMed 

Google Scholar
 

Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

CAS 
PubMed 

Google Scholar
 

Yin, J. et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020).

CAS 
PubMed 

Google Scholar
 

Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).

CAS 
PubMed 

Google Scholar
 

Lu, C.-Y., Browne, D. E., Yang, T. & Pan, J.-W. Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99, 250504 (2007).

PubMed 

Google Scholar
 

Lanyon, B. P. et al. Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).

CAS 
PubMed 

Google Scholar
 

Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

CAS 
PubMed 

Google Scholar
 

Milburn, G. J. A quantum Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).

CAS 
PubMed 

Google Scholar
 

Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

PubMed 

Google Scholar
 

Dawson, C. M., Haselgrove, H. L. & Nielsen, M. A. Noise thresholds for optical quantum computers. Phys. Rev. Lett. 96, 020501 (2006).

PubMed 

Google Scholar
 

Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photonics 2, 030901 (2017).


Google Scholar
 

Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

CAS 
PubMed 

Google Scholar
 

Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

CAS 

Google Scholar
 

Mennea, P. et al. Modular linear optical circuits. Optica 5, 1087–1094 (2018).

CAS 

Google Scholar
 

Meyer-Scott, E. et al. Scalable generation of multiphoton entangled states by active feed-forward and multiplexing. Phys. Rev. Lett. 129, 150501 (2022).

CAS 
PubMed 

Google Scholar
 

Schön, C., Solano, E., Verstraete, F., Cirac, J. I. & Wolf, M. M. Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005).

PubMed 

Google Scholar
 

Economou, S. E., Lindner, N. H. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

PubMed 

Google Scholar
 

Gimeno-Segovia, M., Rudolph, T. & Economou, S. E. Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Phys. Rev. Lett. 123, 070501 (2019).

CAS 
PubMed 

Google Scholar
 

Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

CAS 
PubMed 

Google Scholar
 

Cogan, D., Su, Z.-E., Kenneth, O. & Gershoni, D. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photon. 17, 324–329 (2023).

CAS 

Google Scholar
 

Coste, N. et al. High-rate entanglement between a semiconductor spin and indistinguishable photons. Nat. Photon. 17, 582–587 (2023).

CAS 

Google Scholar
 

Yang, C.-W. et al. Highly efficient multiphoton generation with photon-number-resolving detectors. Nat. Photon. 16, 658–661 (2022).

CAS 

Google Scholar
 

Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Efficient generation of entangled multiphoton graph states from a single atom. Nature 608, 677–681 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Fusion of deterministically generated photonic graph states. Nature 629, 567–572 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hacker, B., Welte, S., Rempe, G. & Ritter, S. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016).

CAS 
PubMed 

Google Scholar
 

Hastrup, J. & Andersen, U. L. Protocol for generating optical Gottesman–Kitaev–Preskill states with cavity QED. Phys. Rev. Lett. 128, 170503 (2022).

CAS 
PubMed 

Google Scholar
 

Menicucci, N. C. et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006).

PubMed 

Google Scholar
 

Menicucci, N. C. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett. 112, 120504 (2014).

PubMed 

Google Scholar
 

Menicucci, N. C., Ma, X. & Ralph, T. C. Arbitrarily large continuous-variable cluster states from a single quantum nondemolition gate. Phys. Rev. Lett. 104, 250503 (2010).

PubMed 

Google Scholar
 

Yokoyama, S. et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photon. 7, 982–986 (2013).

CAS 

Google Scholar
 

Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).

CAS 
PubMed 

Google Scholar
 

Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).

CAS 
PubMed 

Google Scholar
 

Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nat. Phys. 17, 1018–1023 (2021).

CAS 

Google Scholar
 

Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).


Google Scholar
 

Konno, S. et al. Logical states for fault-tolerant quantum computation with propagating light. Science 383, 289–293 (2024).

CAS 
PubMed 

Google Scholar
 

Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger’ cats from photon number states. Nature 448, 784–786 (2007).

CAS 
PubMed 

Google Scholar
 

Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Theory Comput. 9, 143–252 (2013).


Google Scholar
 

Lund, A. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

CAS 
PubMed 

Google Scholar
 

Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

PubMed 

Google Scholar
 

Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

CAS 
PubMed 

Google Scholar
 

Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

CAS 
PubMed 

Google Scholar
 

Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013).

CAS 

Google Scholar
 

Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

CAS 

Google Scholar
 

Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

CAS 

Google Scholar
 

Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

CAS 
PubMed 

Google Scholar
 

Zhong, H.-S. et al. Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

CAS 
PubMed 

Google Scholar
 

Deng, Y.-H. et al. Gaussian boson sampling with pseudo-photon-number resolving detectors and quantum computational advantage. Phys. Rev. Lett. 131, 150601 (2023).

CAS 
PubMed 

Google Scholar
 

Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).


Google Scholar
 

Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).

CAS 

Google Scholar
 

Abbott, R. et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Phys. Rev. X 13, 041039 (2021).


Google Scholar
 

Lough, J. et al. First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory. Phys. Rev. Lett. 126, 041102 (2021).

CAS 
PubMed 

Google Scholar
 

Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, aaa8870 (2015).

PubMed 

Google Scholar
 

Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

CAS 
PubMed 

Google Scholar
 

Weston, M. M. et al. Efficient and pure femtosecond-pulse-length source of polarization-entangled photons. Opt. Express 24, 10869–10879 (2016).

CAS 
PubMed 

Google Scholar
 

Kaneda, F., Garay-Palmett, K., U’Ren, A. B. & Kwiat, P. G. Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric down conversion. Opt. Express 24, 10733–10747 (2016).

CAS 
PubMed 

Google Scholar
 

Ma, X.-s., Zotter, S., Kofler, J., Jennewein, T. & Zeilinger, A. Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011).


Google Scholar
 

Kaneda, F. et al. Time-multiplexed heralded single-photon source. Optica 2, 1010–1013 (2015).

CAS 

Google Scholar
 

Joshi, C., Farsi, A., Clemmen, S., Ramelow, S. & Gaeta, A. L. Frequency multiplexing for quasi-deterministic heralded single-photon sources. Nat. Commun. 9, 847 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Ralph, T. C., Hayes, A. J. F. & Gilchrist, A. Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005).

CAS 
PubMed 

Google Scholar
 

Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computation with coherent optical states. Phys. Rev. A 68, 042319 (2003).


Google Scholar
 

Zurek, W. H. Sub-Planck structure in phase space and its relevance for quantum decoherence. Nature 412, 712–717 (2001).

CAS 
PubMed 

Google Scholar