Tinkham, M. Introduction to superconductivity. Second Edition, Dover Books on Physics (Courier Corporation, 2004).

Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

ADS 

Google Scholar
 

Nicoletti, D. & Cavalleri, A. Nonlinear light–matter interaction at terahertz frequencies. Adv. Opt. Photonics 8, 401–464 (2016).

ADS 

Google Scholar
 

Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1-xTixN induced by terahertz pulse excitation. Phys. Rev. Lett 111, 057002 (2013).

ADS 

Google Scholar
 

Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–9 (2014).

ADS 
MathSciNet 

Google Scholar
 

Tsuji, N. & Aoki, H. Theory of Anderson pseudospin resonance with Higgs mode in superconductors. Phys. Rev. B 92, 064508–064508 (2015).

ADS 

Google Scholar
 

Matsunaga, R. et al. Polarization-resolved terahertz third-harmonic generation in a single-crystal superconductor NbN: dominance of the Higgs mode beyond the BCS approximation. Phys. Rev. B 96, 020505(R) (2017).

ADS 

Google Scholar
 

Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–103 (2020).

ADS 

Google Scholar
 

Cea, T., Castellani, C. & Benfatto, L. Nonlinear optical effects and third-harmonic generation in superconductors: Cooper pairs versus Higgs mode contribution. Phys. Rev. B 93, 180507(R)–180507(R) (2016).

ADS 

Google Scholar
 

Jujo, T. Quasiclassical theory on third-harmonic generation in conventional superconductors with paramagnetic impurities. J. Phys. Soc. Jpn 87, 024704 (2018).

ADS 

Google Scholar
 

Murotani, Y. & Shimano, R. Nonlinear optical response of collective modes in multiband superconductors assisted by nonmagnetic impurities. Phys. Rev. B 99, 224510 (2019).

ADS 

Google Scholar
 

Silaev, M. Nonlinear electromagnetic response and Higgs-mode excitation in BCS superconductors with impurities. Phys. Rev. B 99, 224511 (2019).

ADS 

Google Scholar
 

Tsuji, N. & Nomura, Y. Higgs-mode resonance in third harmonic generation in NbN superconductors: multiband electron–phonon coupling, impurity scattering, and polarization-angle dependence. Phys. Rev. Res. 2, 043029 (2020).


Google Scholar
 

Seibold, G., Udina, M., Castellani, C. & Benfatto, L. Third harmonic generation from collective modes in disordered superconductors. Phys. Rev. B 103, 014512 (2021).

ADS 

Google Scholar
 

Udina, M. et al. The non-linear optical response in cuprates: predominance of the BCS response over the Higgs mode. Faraday Discuss. 237, 168–185 (2022).

ADS 

Google Scholar
 

Fiore, J., Udina, M., Marciani, M., Seibold, G. & Benfatto, L. Contribution of collective excitations to third harmonic generation in two-band superconductors: the case of MgB2. Phys. Rev. B 106, 094515 (2022).

ADS 

Google Scholar
 

Seibold, G. On the evaluation of higher harmonic current responses for high-field spectroscopies in disordered superconductors. Condens. Matter 8, 95 (2023).


Google Scholar
 

Katsumi, K. et al. Revealing novel aspects of light-matter coupling by terahertz two-dimensional coherent spectroscopy: the case of the amplitude mode in superconductors. Phys. Rev. Lett. 132, 256903 (2024).


Google Scholar
 

Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).

ADS 

Google Scholar
 

Katsumi, K., Li, Z. Z., Raffy, H., Gallais, Y. & Shimano, R. Superconducting fluctuations probed by the Higgs mode in Bi2Sr2 CaCu2O8.xÿthin films. Phys. Rev. B 102, 054510 (2020).

ADS 

Google Scholar
 

Chu, H. et al. Fano interference between collective modes in cuprate high-Tc superconductors. Nat. Commun. 14, 1343 (2023).

ADS 

Google Scholar
 

Katsumi, K. et al. Higgs mode in the d-wave superconductor Bi2Sr2 CaCu2O8.x driven by an intense terahertz pulse. Phys. Rev. Lett 120, 117001 (2018).

ADS 

Google Scholar
 

Chu, H. et al. Phase-resolved higgs response in superconducting cuprates. Nat. Commun 11, 1793 (2020).

ADS 

Google Scholar
 

Yuan, J. et al. Dynamical interplay between superconductivity and pseudogap in cuprates as revealed by terahertz third-harmonic generation spectroscopy. Sci. Adv. 10, eadg9211 (2024).


Google Scholar
 

Puviani, M., Haenel, R. & Manske, D. Quench-drive spectroscopy and high-harmonic generation in BCS superconductors. Phys. Rev. B 107, 094501 (2023).

ADS 

Google Scholar
 

Benfatto, L., Castellani, C. & Cea, T. Comment on “calculation of an enhanced A1g symmetry mode induced by Higgs oscillations in the Raman spectrum of high-temperature cuprate superconductors”. Phys. Rev. Lett. 129, 199701 (2022).

ADS 

Google Scholar
 

Benfatto, L., Castellani, C. & Seibold, G. Linear and nonlinear current response in disordered d-wave superconductors. Phys. Rev. B 108, 134508 (2023).

ADS 

Google Scholar
 

Hoffmann, M. C., Brandt, N. C., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. Terahertz Kerr effect. Appl. Phys. Lett 95, 231105 (2009).

ADS 

Google Scholar
 

Yada, H., Miyamoto, T. & Okamoto, H. Terahertz-field-driven sub-picosecond optical switching enabled by large third-order optical nonlinearity in a one-dimensional Mott insulator. Appl. Phys. Lett 102, 091104 (2013).

ADS 

Google Scholar
 

Benhabib, S. et al. Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering. Phys. Rev. B 92, 134502 (2015).

ADS 

Google Scholar
 

Le Tacon, M., Sacuto, A. & Colson, D. Two distinct electronic contributions in the fully symmetric Raman response of high-Tc cuprates. Phys. Rev. B 71, 100504 (2005).


Google Scholar
 

Blanc, S. et al. Quantitative Raman measurement of the evolution of the Cooper-pair density with doping in Bi2Sr2CaCu2O8+δ superconductors. Phys. Rev. B 80, 140502 (2009).

ADS 

Google Scholar
 

Blanc, S. et al. Loss of antinodal coherence with a single d-wave superconducting gap leads to two energy scales for underdoped cuprate superconductors. Phys. Rev. B 82, 144516 (2010).

ADS 

Google Scholar
 

Sacuto, A. et al. Electronic Raman scattering in copper oxide superconductors: Understanding the phase diagram. C. R. Phys. 12, 480–501 (2011).

ADS 

Google Scholar
 

Cooper, S. et al. Gap anisotropy and phonon self-energy effects in single-crystal YBa2Cu3O7−δ. Phys. Rev. B 38, 11934 (1988).

ADS 

Google Scholar
 

Staufer, T., Nemetschek, R., Hackl, R., Müller, P. & Veith, H. Investigation of the superconducting order parameter in Bi2Sr2CaCu2O8 single crystals. Phys. Rev. Lett. 68, 1069 (1992).

ADS 

Google Scholar
 

Gallais, Y., Sacuto, A. & Colson, D. Resonant Raman scattering in mercurate single crystals. Physica C: Superconductivity 408, 785–788 (2004).

ADS 

Google Scholar
 

Venturini, F., Michelucci, U., Devereaux, T. P. & Kampf, A. P. Collective spin fluctuation mode and Raman scattering in superconducting cuprates. Phys. Rev. B 62, 15204–15207 (2000).

ADS 

Google Scholar
 

Montiel, X. et al. η collective mode as A1g Raman resonance in cuprate superconductors. Phys. Rev. B 93, 024515 (2016).

ADS 

Google Scholar
 

Venturini, F. et al. Doping dependence of the electronic Raman spectra in cuprates. J. Phys. Chem. Solids 63, 2345–2348 (2002).

ADS 

Google Scholar
 

Glier, T. E. et al. Direct observation of the Higgs mode in a superconductor by non-equilibrium Raman scattering. Nat. Commu 16, 7027 (2025).


Google Scholar
 

Gallais, Y. & Paul, I. Charge nematicity and electronic Raman scattering in iron-based superconductors. C. R. Phys. 17, 113–139 (2016).

ADS 

Google Scholar
 

Labat, D., Kotetes, P., Andersen, B. M. & Paul, I. Variation of shear moduli across superconducting phase transitions. Phys. Rev. B 101, 144502 (2020).

ADS 

Google Scholar
 

Anzai, H. et al. Relation between the nodal and antinodal gap and critical temperature in superconducting Bi2212. Nat. Commun. 4, 1815 (2013).

ADS 

Google Scholar
 

Grasset, R. et al. Terahertz pulse-driven collective mode in the nematic superconducting state of Ba1–xKxFe2As2. npj Quantum Mater. 7, 4 (2022).

ADS 

Google Scholar
 

Müller, M. A., Volkov, P. A., Paul, I. & Eremin, I. M. Interplay between nematicity and Bardasis–Schrieffer modes in the short-time dynamics of unconventional superconductors. Phys. Rev. B 103, 024519 (2021).

ADS 

Google Scholar
 

Auvray, N. et al. Nematic fluctuations in the cuprate superconductor Bi2Sr2CaCu2O8+δ. Nat. Commun. 10, 5209 (2019).

ADS 

Google Scholar
 

Ishida, K. et al. Divergent nematic susceptibility near the pseudogap critical point in a cuprate superconductor. J. Phys. Soc. Jpn. 89, 064707 (2020).

ADS 

Google Scholar
 

Nakata, S. et al. Nematicity in a cuprate superconductor revealed by angle-resolved photoemission spectroscopy under uniaxial strain. npj Quantum Mater. 6, 86 (2021).

ADS 

Google Scholar
 

Presland, M., Tallon, J., Buckley, R., Liu, R. & Flower, N. General trends in oxygen stoichiometry effects on tc in bi and tl superconductors. Physica C: Superconductivity 176, 95–105 (1991).

ADS 

Google Scholar
 

Hebling, J., Almasi, G., Kozma, I. & Kuhl, J. Velocity matching by pulse front tilting for large area tHz-pulse generation. Opt. Express 10, 1161 (2002).

Watanabe, S., Minami, N. & Shimano, R. Intense terahertz pulse induced exciton generation in carbon nanotubes. Opt. Express 19, 1528–1538 (2011).

ADS 

Google Scholar
 

Dressel, M. & Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, 2002).

Molegraaf, H., Presura, C., Van Der Marel, D., Kes, P. & Li, M. Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ. Science 295, 2239–2241 (2002).

ADS 

Google Scholar
 

Carbone, F. et al. Doping dependence of the redistribution of optical spectral weight in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 74, 064510 (2006).

ADS 

Google Scholar
 

Kuzmenko, A., Molegraaf, H., Carbone, F. & Van Der Marel, D. Temperature-modulation analysis of superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8. Phys. Rev. B 72, 144503 (2005).

ADS 

Google Scholar
 

Gedik, N. et al. Abrupt transition in quasiparticle dynamics at optimal doping in a cuprate superconductor system. Phys. Rev. Lett. 95, 117005 (2005).

ADS 

Google Scholar
 

Giannetti, C. et al. Revealing the high-energy electronic excitations underlying the onset of high-temperature superconductivity in cuprates. Nat. Commun. 2, 353 (2011).

ADS 

Google Scholar
 

Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).

ADS 

Google Scholar
 

Segre, G. P. et al. Photoinduced changes of reflectivity in single crystals of YBa2Cu3O6.5 (ortho II). Phys. Rev. Lett. 88, 137001 (2002).

ADS 

Google Scholar
 

Demsar, J., Averitt, R. D., Kabanov, V. V. & Mihailovic, D. Comment on “photoinduced changes of reflectivity in single crystals of YBa2Cu3O6.5 (ortho II)”. Phys. Rev. Lett. 91, 169701 (2003).

ADS 

Google Scholar
 

Gedik, N., Orenstein, J., Liang, R., Bonn, D. A. & Hardy, W. N. Gedik et al. reply. Phys. Rev. Lett. 91, 169702 (2003).

ADS 

Google Scholar
 

Rübhausen, M., Gozar, A., Klein, M., Guptasarma, P. & Hinks, D. Superconductivity-induced optical changes for energies of 100 δ in the cuprates. Phys. Rev. B 63, 224514 (2001).

ADS 

Google Scholar
 

Hayes, W. & Loudon, R. Scattering of Light by Crystals. Dover Books on Physics (Courier Corporation, 2012).