Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018;561:45–56.

Article 
PubMed 
CAS 

Google Scholar
 

Collaborators GBDD. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1160–203.

Article 

Google Scholar
 

Harper S. Economic and social implications of aging societies. Science. 2014;346:587–91.

Article 
PubMed 
CAS 

Google Scholar
 

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Guerville F, De Souto BP, Ader I, Andrieu S, Casteilla L, Dray C, et al. Revisiting the hallmarks of aging to identify markers of biological age. J Prev Alzheimers Dis. 2020;7:56–64.

Article 
PubMed 
CAS 

Google Scholar
 

Carter CS. A “gut feeling” to create a 10th hallmark of aging. J Gerontol A Biol Sci Med Sci. 2021;76:1891–4.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7:135.

Article 
PubMed 
PubMed Central 

Google Scholar
 

de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71:1020–32.

Article 
PubMed 

Google Scholar
 

O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93.

Article 
PubMed 
PubMed Central 

Google Scholar
 

O’Toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350:1214–5.

Article 
PubMed 

Google Scholar
 

Buford TW. (Dis)trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017;5:80.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kundu P, Blacher E, Elinav E, Pettersson S. Our gut microbiome: the evolving inner self. Cell. 2017;171:1481–93.

Article 
PubMed 
CAS 

Google Scholar
 

Bradley E, Haran J. The human gut microbiome and aging. Gut Microbes. 2024;16:2359677.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ghosh TS, Shanahan F, O’Toole PW. The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol. 2022;19:565–84.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Walrath T, Dyamenahalli KU, Hulsebus HJ, McCullough RL, Idrovo JP, Boe DM, et al. Age-related changes in intestinal immunity and the microbiome. J Leukoc Biol. 2021;109:1045–61.

Article 
PubMed 
CAS 

Google Scholar
 

Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19:e295–304.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Smith P, Willemsen D, Popkes M, Metge F, Gandiwa E, Reichard M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife. 2017;6:e27014.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21:455-466.e4.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Barcena C, Valdes-Mas R, Mayoral P, Garabaya C, Durand S, Rodriguez F, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25:1234–42.

Article 
PubMed 
CAS 

Google Scholar
 

Chen Y, Zhang S, Zeng B, Zhao J, Yang M, Zhang M, et al. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging (Albany NY). 2020;12:4778–93.

Article 
PubMed 
CAS 

Google Scholar
 

Jing Y, Wang Q, Bai F, Li Z, Li Y, Liu W, et al. Age-related alterations in gut homeostasis are microbiota dependent. NPJ Biofilms Microbiomes. 2025;11:51.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Best L, Dost T, Esser D, Flor S, Gamarra AM, Haase M, et al. Metabolic modelling reveals the aging-associated decline of host-microbiome metabolic interactions in mice. Nat Microbiol. 2025;10:973–91.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Virk B, Correia G, Dixon DP, Feyst I, Jia J, Oberleitner N, et al. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biol. 2012;10:67.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J, Tay LWR, et al. Microbial genetic composition tunes host longevity. Cell. 2017;169:1249-1262.e13.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gusarov I, Gautier L, Smolentseva O, Shamovsky I, Eremina S, Mironov A, et al. Bacterial nitric oxide extends the lifespan of C. elegans. Cell. 2013;152:818–30.

Article 
PubMed 
CAS 

Google Scholar
 

Kim J, Jo Y, Lim G, Ji Y, Roh JH, Kim WG, et al. A microbiota-derived metabolite, 3-phenyllactic acid, prolongs healthspan by enhancing mitochondrial function and stress resilience via SKN-1/ATFS-1 in C. elegans. Nat Commun. 2024;15:10773.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brummel T, Ching A, Seroude L, Simon AF, Benzer S. Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci U S A. 2004;101:12974–9.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ren C, Webster P, Finkel SE, Tower J. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab. 2007;6:144–52.

Article 
PubMed 
CAS 

Google Scholar
 

Keebaugh ES, Yamada R, Ja WW. The nutritional environment influences the impact of microbes on Drosophila melanogaster life span. MBio. 2019;10:e00885–19.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Obata F, Fons CO, Gould AP. Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nat Commun. 2018;9:975.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Guo L, Karpac J, Tran SL, Jasper H. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell. 2014;156:109–22.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li H, Qi Y, Jasper H. Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan. Cell Host Microbe. 2016;19:240–53.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Shukla AK, Johnson K, Giniger E. Common features of aging fail to occur in Drosophila raised without a bacterial microbiome. iScience. 2021;24:102703.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Satokari R, Gronroos T, Laitinen K, Salminen S, Isolauri E. Bifidobacterium and lactobacillus DNA in the human placenta. Lett Appl Microbiol. 2009;48:8–12.

Article 
PubMed 
CAS 

Google Scholar
 

Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237ra265.


Google Scholar
 

Rautava S, Collado MC, Salminen S, Isolauri E. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology. 2012;102:178–84.

Article 
PubMed 

Google Scholar
 

Jimenez E, Fernandez L, Marin ML, Martin R, Odriozola JM, Nueno-Palop C, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol. 2005;51:270–4.

Article 
PubMed 
CAS 

Google Scholar
 

Younge N, McCann JR, Ballard J, Plunkett C, Akhtar S, Araujo-Perez F, et al. Fetal exposure to the maternal microbiota in humans and mice. JCI Insight. 2019;4:e127806.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stinson LF, Payne MS, Keelan JA. Planting the seed: origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol. 2017;43:352–69.

Article 
PubMed 
CAS 

Google Scholar
 

de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, et al. Human placenta has no microbiome but can contain potential pathogens. Nature. 2019;572:329–34.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5:48.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kennedy KM, de Goffau MC, Perez-Munoz ME, Arrieta MC, Backhed F, Bork P, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature. 2023;613:639–49.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy. 2008;38:634–42.

Article 
PubMed 
CAS 

Google Scholar
 

Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–93.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7:307ra152.

Article 
PubMed 

Google Scholar
 

Stokholm J, Thorsen J, Blaser MJ, Rasmussen MA, Hjelmso M, Shah S, et al. Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Sci Transl Med. 2020;12:eaax9929.

Article 
PubMed 

Google Scholar
 

Hoskinson C, Dai DLY, Del Bel KL, Becker AB, Moraes TJ, Mandhane PJ, et al. Delayed gut microbiota maturation in the first year of life is a hallmark of pediatric allergic disease. Nat Commun. 2023;14:4785.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Martin R, Langa S, Reviriego C, Jiminez E, Marin ML, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–8.

Article 
PubMed 
CAS 

Google Scholar
 

Fernandez L, Langa S, Martin V, Maldonado A, Jimenez E, Martin R, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69:1–10.

Article 
PubMed 
CAS 

Google Scholar
 

Heikkila MP, Saris PE. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95:471–8.

Article 
PubMed 
CAS 

Google Scholar
 

Collado MC, Delgado S, Maldonado A, Rodriguez JM. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett Appl Microbiol. 2009;48:523–8.

Article 
PubMed 
CAS 

Google Scholar
 

Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE. 2011;6:e21313.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96:544–51.

Article 
PubMed 
CAS 

Google Scholar
 

Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe. 2019;25:324-335.e4.

Article 
PubMed 
CAS 

Google Scholar
 

Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22:1147–62.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185:385–94.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Henrick BM, Rodriguez L, Lakshmikanth T, Pou C, Henckel E, Arzoomand A, et al. Bifidobacteria-mediated immune system imprinting early in life. Cell. 2021;184:3884-3898.e11.

Article 
PubMed 
CAS 

Google Scholar
 

Hickman B, Salonen A, Ponsero AJ, Jokela R, Kolho KL, de Vos WM, et al. Gut microbiota wellbeing index predicts overall health in a cohort of 1000 infants. Nat Commun. 2024;15:8323.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703.

Article 
PubMed 

Google Scholar
 

Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562:583–8.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4578–85.

Article 
PubMed 
CAS 

Google Scholar
 

Sawhney SS, Thanert R, Thanert A, Hall-Moore C, Ndao IM, Mahmud B, et al. Gut microbiome evolution from infancy to 8 years of age. Nat Med. 2025. https://doi.org/10.1038/s41591-025-03610-0.

Article 
PubMed 

Google Scholar
 

Differding MK, Doyon M, Bouchard L, Perron P, Guerin R, Asselin C, et al. Potential interaction between timing of infant complementary feeding and breastfeeding duration in determination of early childhood gut microbiota composition and BMI. Pediatr Obes. 2020;15:e12642.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lalli MK, Salo TE, Hakola L, Knip M, Virtanen SM, Vatanen T. Associations between dietary fibers and gut microbiome composition in the EDIA longitudinal infant cohort. Am J Clin Nutr. 2025;121:83–99.

Article 
PubMed 
CAS 

Google Scholar
 

Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ, Paliy O. Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol. 2011;77:404–12.

Article 
PubMed 
CAS 

Google Scholar
 

Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339:1084–8.

Article 
PubMed 
CAS 

Google Scholar
 

Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39:400–12.

Article 
PubMed 
CAS 

Google Scholar
 

Weger BD, Gobet C, Yeung J, Martin E, Jimenez S, Betrisey B, et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 2019;29:362-382.e8.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Korpela K, Kallio S, Salonen A, Hero M, Kukkonen AK, Miettinen PJ, et al. Gut microbiota develop towards an adult profile in a sex-specific manner during puberty. Sci Rep. 2021;11:23297.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Wang L, Yi Q, Xu H, Liu H, Tan B, Deng H, et al. Alterations in the gut microbiota community are associated with childhood obesity and precocious puberty. BMC Microbiol. 2024;24:311.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ou Y, Belzer C, Smidt H, de Weerth C. Development of the gut microbiota in the first 14 years of life and its relations to internalizing and externalizing difficulties and social anxiety during puberty. Eur Child Adolesc Psychiatry. 2024;33:847–60.

Article 
PubMed 

Google Scholar
 

Murray E, Sharma R, Smith KB, Mar KD, Barve R, Lukasik M, et al. Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression- and anxiety-like behaviors in adulthood in a sex-specific manner. Brain Behav Immun. 2019;81:198–212.

Article 
PubMed 
CAS 

Google Scholar
 

Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.

Article 

Google Scholar
 

Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550:61–6.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, et al. American gut: an open platform for citizen science microbiome research. mSystems. 2018;3:e00031-18.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32:834–41.

Article 
PubMed 
CAS 

Google Scholar
 

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

Article 
PubMed 
CAS 

Google Scholar
 

Lu J, Zhang L, Zhai Q, Zhao J, Zhang H, Lee YK, et al. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes. 2021;7:71.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tian C, Zhang T, Zhuang D, Luo Y, Li T, Zhao F, et al. Industrialization drives the gut microbiome and resistome of the Chinese populations. mSystems. 2025;10:e0137224.

Article 
PubMed 

Google Scholar
 

Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, et al. Microbiome connections with host metabolism and habitual diet from 1098 deeply phenotyped individuals. Nat Med. 2021;27:321–32.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352:560–4.

Article 
PubMed 
CAS 

Google Scholar
 

Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–9.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gacesa R, Kurilshikov A, Vich Vila A, Sinha T, Klaassen MAY, Bolte LA, et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature. 2022;604:732–9.

Article 
PubMed 
CAS 

Google Scholar
 

Nishijima S, Suda W, Oshima K, Kim SW, Hirose Y, Morita H, et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016;23:125–33.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Park J, Kato K, Murakami H, Hosomi K, Tanisawa K, Nakagata T, et al. Comprehensive analysis of gut microbiota of a healthy population and covariates affecting microbial variation in two large Japanese cohorts. BMC Microbiol. 2021;21:151.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Abdill RJ, Graham SP, Rubinetti V, Ahmadian M, Hicks P, Chetty A, et al. Integration of 168,000 samples reveals global patterns of the human gut microbiome. Cell. 2025;188:1100-1118.e17.

Article 
PubMed 
CAS 

Google Scholar
 

Rosenberg E. Diversity of bacteria within the human gut and its contribution to the functional unity of holobionts. NPJ Biofilms Microbiomes. 2024;10:134.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630–8.

Article 
PubMed 
CAS 

Google Scholar
 

Ives AR, Carpenter SR. Stability and diversity of ecosystems. Science. 2007;317:58–62.

Article 
PubMed 
CAS 

Google Scholar
 

Mancabelli L, Milani C, De Biase R, Bocchio F, Fontana F, Lugli GA, et al. Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide metagenomic investigation. mSystems. 2024;9:e0129423.

Article 
PubMed 

Google Scholar
 

Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol. 2025;16:1559521.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yassour M, Vatanen T, Siljander H, Hamalainen AM, Harkonen T, Ryhanen SJ, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016;8:343ra381.

Article 

Google Scholar
 

Li X, Brejnrod A, Thorsen J, Zachariasen T, Trivedi U, Russel J, et al. Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults. Nat Commun. 2023;14:8526.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zaura E, Brandt BW, Teixeira de Mattos MJ, Buijs MJ, Caspers MP, Rashid MU, et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio. 2015;6:e01693-01615.

Article 

Google Scholar
 

Hildebrand F, Gossmann TI, Frioux C, Ozkurt E, Myers PN, Ferretti P, et al. Dispersal strategies shape persistence and evolution of human gut bacteria. Cell Host Microbe. 2021;29:1167-1176.e9.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Olsson LM, Boulund F, Nilsson S, Khan MT, Gummesson A, Fagerberg L, et al. Dynamics of the normal gut microbiota: a longitudinal one-year population study in Sweden. Cell Host Microbe. 2022;30:726-739.e3.

Article 
PubMed 
CAS 

Google Scholar
 

Han N, Zhang T, Qiang Y, Peng X, Li X, Zhang W. Time-scale analysis of the long-term variability of human gut microbiota characteristics in Chinese individuals. Commun Biol. 2022;5:1414.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–99.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19:731–43.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48:1407–12.

Article 
PubMed 
CAS 

Google Scholar
 

Ruhlemann MC, Hermes BM, Bang C, Doms S, Moitinho-Silva L, Thingholm LB, et al. Genome-wide association study in 8956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat Genet. 2021;53:147–55.

Article 
PubMed 

Google Scholar
 

Lopera-Maya EA, Kurilshikov A, van der Graaf A, Hu S, Andreu-Sanchez S, Chen L, et al. Effect of host genetics on the gut microbiome in 7738 participants of the Dutch Microbiome Project. Nat Genet. 2022;54:143–51.

Article 
PubMed 
CAS 

Google Scholar
 

Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, Tokolyi A, et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet. 2022;54:134–42.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Wang J, Thingholm LB, Skieceviciene J, Rausch P, Kummen M, Hov JR, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48:1396–406.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Liu X, Tang S, Zhong H, Tong X, Jie Z, Ding Q, et al. A genome-wide association study for gut metagenome in Chinese adults illuminates complex diseases. Cell Discov. 2021;7:9.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.

Article 
PubMed 
CAS 

Google Scholar
 

Barker-Tejeda TC, Zubeldia-Varela E, Macias-Camero A, Alonso L, Martin-Antoniano IA, Rey-Stolle MF, et al. Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach. Nat Commun. 2024;15:3004.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5:e10667.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY). 2013;5:902–12.

Article 
PubMed 
CAS 

Google Scholar
 

Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Sci. 2012;338:120–3.

Article 
CAS 

Google Scholar
 

Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63:1932–42.

Article 
PubMed 
CAS 

Google Scholar
 

Yu LC, Wei SC, Li YH, Lin PY, Chang XY, Weng JP, et al. Invasive pathobionts contribute to colon cancer initiation by counterbalancing epithelial antimicrobial responses. Cell Mol Gastroenterol Hepatol. 2022;13:57–79.

Article 
PubMed 
CAS 

Google Scholar
 

Pai YC, Li YH, Turner JR, Yu LC. Transepithelial barrier dysfunction drives microbiota dysbiosis to initiate epithelial clock-driven inflammation. J Crohns Colitis. 2023;17:1471–88.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–91.

Article 
PubMed 
CAS 

Google Scholar
 

Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.

Article 
PubMed 
CAS 

Google Scholar
 

Jeffery IB, Lynch DB, O’Toole PW. Composition and temporal stability of the gut microbiota in older persons. ISME J. 2016;10:170–82.

Article 
PubMed 
CAS 

Google Scholar
 

Kheirbek RE, Fokar A, Shara N, Bell-Wilson LK, Moore HJ, Olsen E, et al. Characteristics and incidence of chronic illness in community-dwelling predominantly male US veteran centenarians. J Am Geriatr Soc. 2017;65:2100–6.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26:1480–5.

Article 
PubMed 
CAS 

Google Scholar
 

Kong F, Hua Y, Zeng B, Ning R, Li Y, Zhao J. Gut microbiota signatures of longevity. Curr Biol. 2016;26:R832–3.

Article 
PubMed 
CAS 

Google Scholar
 

Wang F, Yu T, Huang G, Cai D, Liang X, Su H, et al. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol. 2015;25:1195–204.

Article 
PubMed 
CAS 

Google Scholar
 

Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci. 2018;75:129–48.

Article 
PubMed 
CAS 

Google Scholar
 

Pang S, Chen X, Lu Z, Meng L, Huang Y, Yu X, et al. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. Nat Aging. 2023;3:436–49.

Article 
PubMed 

Google Scholar
 

Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab. 2021;3:274–86.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Ghosh TS, Shanahan F, O’Toole PW. Toward an improved definition of a healthy microbiome for healthy aging. Nat Aging. 2022;2:1054–69.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cheng S, Larson MG, McCabe EL, Murabito JM, Rhee EP, Ho JE, et al. Distinct metabolomic signatures are associated with longevity in humans. Nat Commun. 2015;6(1):6791.

Article 
PubMed 
CAS 

Google Scholar
 

Wu L, Zeng T, Zinellu A, Rubino S, Kelvin DJ, Carru C. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems. 2019;4:e00325–19.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu L, Xie X, Li Y, Liang T, Zhong H, Yang L, et al. Gut microbiota as an antioxidant system in centenarians associated with high antioxidant activities of gut-resident Lactobacillus. NPJ Biofilms Microbiomes. 2022;8:102.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599:458–64.

Article 
PubMed 
CAS 

Google Scholar
 

Liu S, Zhang Z, Wang X, Ma Y, Ruan H, Wu X, et al. Biosynthetic potential of the gut microbiome in longevous populations. Gut Microbes. 2024;16:2426623.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Si J, Vazquez-Castellanos JF, Gregory AC, Decommer L, Rymenans L, Proost S, et al. Long-term life history predicts current gut microbiome in a population-based cohort study. Nat Aging. 2022;2:885–95.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4-9.

Article 
PubMed 

Google Scholar
 

Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19:10–9.

Article 
PubMed 
CAS 

Google Scholar
 

Bosco N, Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun. 2021;22:289–303.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5:e73.

Article 

Google Scholar
 

Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294:1–8.

Article 
PubMed 
CAS 

Google Scholar
 

Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–6.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99:1877–2013.

Article 
PubMed 
CAS 

Google Scholar
 

Solanki R, Karande A, Ranganathan P. Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration. Front Neurol. 2023;14:1149618.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao CC, Ardura-Fabregat A, et al. Microglial control of astrocytes in response to microbial metabolites. Nature. 2018;557:724–8.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Erny D, Dokalis N, Mezo C, Castoldi A, Mossad O, Staszewski O, et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 2021;33:2260-2276.e7.

Article 
PubMed 
CAS 

Google Scholar
 

Duscha A, Gisevius B, Hirschberg S, Yissachar N, Stangl GI, Dawin E, et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell. 2020;180:1067-1080.e6.

Article 
PubMed 
CAS 

Google Scholar
 

Liu X, Li X, Xia B, Jin X, Zou Q, Zeng Z, et al. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metab. 2021;33:923-938.e6.

Article 
PubMed 
CAS 

Google Scholar
 

Seo DO, O’Donnell D, Jain N, Ulrich JD, Herz J, Li Y, et al. ApoE isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science. 2023;379:eadd1236.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Colombo AV, Sadler RK, Llovera G, Singh V, Roth S, Heindl S, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Abeta plaque deposition. Elife. 2021;10:e59826.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167(1469–1480):e1412.


Google Scholar
 

Shin C, Lim Y, Lim H, Ahn TB. Plasma short-chain fatty acids in patients with Parkinson’s disease. Mov Disord. 2020;35:1021–7.

Article 
PubMed 
CAS 

Google Scholar
 

Yang X, Ai P, He X, Mo C, Zhang Y, Xu S, et al. Parkinson’s disease is associated with impaired gut-blood barrier for short-chain fatty acids. Mov Disord. 2022;37:1634–43.

Article 
PubMed 
CAS 

Google Scholar
 

Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, et al. Signatures of early frailty in the gut microbiota. Genome Med. 2016;8:8.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Almeida HM, Sardeli AV, Conway J, Duggal NA, Cavaglieri CR. Comparison between frail and non-frail older adults’ gut microbiota: a systematic review and meta-analysis. Ageing Res Rev. 2022;82:101773.

Article 
PubMed 

Google Scholar
 

Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 2019;11:eaan5662.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li G, Jin B, Fan Z. Mechanisms involved in gut microbiota regulation of skeletal muscle. Oxid Med Cell Longev. 2022;2022:2151191.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Han DS, Wu WK, Liu PY, Yang YT, Hsu HC, Kuo CH, et al. Differences in the gut microbiome and reduced fecal butyrate in elders with low skeletal muscle mass. Clin Nutr. 2022;41:1491–500.

Article 
PubMed 
CAS 

Google Scholar
 

Otsuka R, Zhang S, Furuya K, Tange C, Sala G, Ando F, et al. Association between short-chain fatty acid intake and development of muscle strength loss among community-dwelling older Japanese adults. Exp Gerontol. 2023;173:112080.

Article 
PubMed 
CAS 

Google Scholar
 

Liu C, Wong PY, Wang Q, Wong HY, Huang T, Cui C, et al. Short-chain fatty acids enhance muscle mass and function through the activation of mTOR signalling pathways in sarcopenic mice. J Cachexia Sarcopenia Muscle. 2024;15:2387–401.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

Article 
PubMed 
CAS 

Google Scholar
 

Fackelmann G, Manghi P, Carlino N, Heidrich V, Piccinno G, Ricci L, et al. Gut microbiome signatures of vegan, vegetarian and omnivore diets and associated health outcomes across 21,561 individuals. Nat Microbiol. 2025;10:41–52.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812–21.

Article 
PubMed 

Google Scholar
 

Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69:1218–28.

Article 
PubMed 
CAS 

Google Scholar
 

Marseglia A, Xu W, Fratiglioni L, Fabbri C, Berendsen AAM, Bialecka-Debek A, et al. Effect of the NU-AGE diet on cognitive functioning in older adults: a randomized controlled trial. Front Physiol. 2018;9:349.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr. 2015;113(Suppl):S1-5.

Article 
PubMed 
CAS 

Google Scholar
 

Tessier AJ, Wang F, Korat AA, Eliassen AH, Chavarro J, Grodstein F, et al. Optimal dietary patterns for healthy aging. Nat Med. 2025. https://doi.org/10.1038/s41591-025-03570-5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Di Francesco A, Deighan AG, Litichevskiy L, Chen Z, Luciano A, Robinson L, et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature. 2024;634:684–92.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Litichevskiy L, Considine M, Gill J, Shandar V, Cox TO, Descamps HC, et al. Gut metagenomes reveal interactions between dietary restriction, ageing and the microbiome in genetically diverse mice. Nat Microbiol. 2025. https://doi.org/10.1038/s41564-025-01963-3.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ruiz A, Cerdo T, Jauregui R, Pieper DH, Marcos A, Clemente A, et al. One-year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents. Environ Microbiol. 2017;19:1536–51.

Article 
PubMed 
CAS 

Google Scholar
 

Pisanu S, Palmas V, Madau V, Casula E, Deledda A, Cusano R, et al. Impact of a moderately hypocaloric mediterranean diet on the gut microbiota composition of Italian obese patients. Nutrients. 2020;12:2707.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Flanagan EW, Most J, Mey JT, Redman LM. Calorie restriction and aging in humans. Annu Rev Nutr. 2020;40:105–33.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Severinsen MCK, Pedersen BK. Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev. 2020;41:594–609.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Qiu Y, Fernandez-Garcia B, Lehmann HI, Li G, Kroemer G, Lopez-Otin C, et al. Exercise sustains the hallmarks of health. J Sport Health Sci. 2023;12:8–35.

Article 
PubMed 

Google Scholar
 

Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev. 2019;47:75–85.

Article 
PubMed 

Google Scholar
 

Hawley JA, Forster SC, Giles EM. Exercise, the gut microbiome and gastrointestinal diseases: therapeutic impact and molecular mechanisms. Gastroenterology. 2025. https://doi.org/10.1053/j.gastro.2025.01.224.

Article 
PubMed 

Google Scholar
 

Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical exercise and the gut microbiome: a bidirectional relationship influencing health and performance. Nutrients. 2024;16:3663.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lai ZL, Tseng CH, Ho HJ, Cheung CKY, Lin JY, Chen YJ, et al. Fecal microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Sci Rep. 2018;8:15625.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–20.

Article 
PubMed 
CAS 

Google Scholar
 

Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018;67:625–33.

PubMed 
CAS 

Google Scholar
 

Bressa C, Bailen-Andrino M, Perez-Santiago J, Gonzalez-Soltero R, Perez M, Montalvo-Lominchar MG, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE. 2017;12:e0171352.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Munukka E, Ahtiainen JP, Puigbo P, Jalkanen S, Pahkala K, Keskitalo A, et al. Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Front Microbiol. 2018;9:2323.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Martin D, Bonneau M, Orfila L, Horeau M, Hazon M, Demay R, et al. Atypical gut microbial ecosystem from athletes with very high exercise capacity improves insulin sensitivity and muscle glycogen store in mice. Cell Rep. 2025;44:115448.

Article 
PubMed 
CAS 

Google Scholar
 

Erlandson KM, Liu J, Johnson R, Dillon S, Jankowski CM, Kroehl M, et al. An exercise intervention alters stool microbiota and metabolites among older, sedentary adults. Ther Adv Infect Dis. 2021;8:20499361211027067.

PubMed 
PubMed Central 
CAS 

Google Scholar
 

Zhu Q, Jiang S, Du G. Effects of exercise frequency on the gut microbiota in elderly individuals. Microbiol Open. 2020;9:e1053.

Article 

Google Scholar
 

Clauss M, Gerard P, Mosca A, Leclerc M. Interplay between exercise and gut microbiome in the context of human health and performance. Front Nutr. 2021;8:637010.

Article 
PubMed 
PubMed Central 

Google Scholar
 

van Wijck K, Lenaerts K, van Loon LJ, Peters WH, Buurman WA, Dejong CH. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS ONE. 2011;6:e22366.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Karl JP, Margolis LM, Madslien EH, Murphy NE, Castellani JW, Gundersen Y, et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am J Physiol Gastrointest Liver Physiol. 2017;312:G559–71.

Article 
PubMed 

Google Scholar
 

Jayanama K, Theou O. Effects of probiotics and prebiotics on frailty and ageing: a narrative review. Curr Clin Pharmacol. 2020;15:183–92.

PubMed 

Google Scholar
 

Ale EC, Binetti AG. Role of probiotics, prebiotics, and synbiotics in the elderly: insights into their applications. Front Microbiol. 2021;12:631254.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hong CT, Chen JH, Huang TW. Probiotics treatment for Parkinson disease: a systematic review and meta-analysis of clinical trials. Aging (Albany NY). 2022;14:7014–25.

Article 
PubMed 
CAS 

Google Scholar
 

Shokri-Mashhadi N, Navab F, Ansari S, Rouhani MH, Hajhashemy Z, Saraf-Bank S. A meta-analysis of the effect of probiotic administration on age-related sarcopenia. Food Sci Nutr. 2023;11:4975–87.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Setbo E, Campbell K, O’Cuiv P, Hubbard R. Utility of probiotics for maintenance or improvement of health status in older people—a scoping review. J Nutr Health Aging. 2019;23:364–72.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jukic Peladic N, Dell’Aquila G, Carrieri B, Maggio M, Cherubini A, Orlandoni P. Potential role of probiotics for inflammaging: a narrative review. Nutrients. 2021;13:2919.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Recharla N, Choi J, Puligundla P, Park SJ, Lee HJ. Impact of probiotics on cognition and constipation in the elderly: a meta-analysis. Heliyon. 2023;9:e18306.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174:1388-1405.e1.

Article 
PubMed 
CAS 

Google Scholar
 

Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18:649–67.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arnold JW, Roach J, Fabela S, Moorfield E, Ding S, Blue E, et al. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. Microbiome. 2021;9:31.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Kadyan S, Park G, Singh P, Arjmandi B, Nagpal R. Prebiotic mechanisms of resistant starches from dietary beans and pulses on gut microbiome and metabolic health in a humanized murine model of aging. Front Nutr. 2023;10:1106463.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kadyan S, Park G, Wang B, Nagpal R. Dietary fiber modulates gut microbiome and metabolome in a host sex-specific manner in a murine model of aging. Front Mol Biosci. 2023;10:1182643.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lee SH, You HS, Kang HG, Kang SS, Hyun SH. Association between altered blood parameters and gut microbiota after synbiotic intake in healthy, elderly Korean women. Nutrients. 2020;12:3112.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Wang S, Ahmadi S, Nagpal R, Jain S, Mishra SP, Kavanagh K, et al. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3–5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. Geroscience. 2020;42:333–52.

Article 
PubMed 
CAS 

Google Scholar
 

Powell DN, Swimm A, Sonowal R, Bretin A, Gewirtz AT, Jones RM, et al. Indoles from the commensal microbiota act via the AHR and IL-10 to tune the cellular composition of the colonic epithelium during aging. Proc Natl Acad Sci U S A. 2020;117:21519–26.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Chen P, Chen F, Lei J, Zhou B. Gut microbial metabolite urolithin B attenuates intestinal immunity function in vivo in aging mice and in vitro in HT29 cells by regulating oxidative stress and inflammatory signalling. Food Funct. 2021;12:11938–55.

Article 
PubMed 
CAS 

Google Scholar
 

Kolonics A, Bori Z, Torma F, Abraham D, Feher J, Radak Z. Exercise combined with postbiotics treatment results in synergistic improvement of mitochondrial function in the brain of male transgenic mice for Alzheimer’s disease. BMC Neurosci. 2023;24:68.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

El Haddad L, Mendoza JF, Jobin C. Bacteriophage-mediated manipulations of microbiota in gastrointestinal diseases. Front Microbiol. 2022;13:1055427.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fujiki J, Schnabl B. Phage therapy: targeting intestinal bacterial microbiota for the treatment of liver diseases. JHEP Rep. 2023;5:100909.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 2019;575:505–11.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Federici S, Kredo-Russo S, Valdes-Mas R, Kviatcovsky D, Weinstock E, Matiuhin Y, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell. 2022;185:2879-2898.e4.

Article 
PubMed 
CAS 

Google Scholar
 

Ichikawa M, Nakamoto N, Kredo-Russo S, Weinstock E, Weiner IN, Khabra E, et al. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nat Commun. 2023;14:3261.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gan L, Feng Y, Du B, Fu H, Tian Z, Xue G, et al. Bacteriophage targeting microbiota alleviates non-alcoholic fatty liver disease induced by high alcohol-producing Klebsiella pneumoniae. Nat Commun. 2023;14:3215.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gindin M, Febvre HP, Rao S, Wallace TC, Weir TL. Bacteriophage for Gastrointestinal Health (PHAGE) study: evaluating the safety and tolerability of supplemental bacteriophage consumption. J Am Coll Nutr. 2019;38:68–75.

Article 
PubMed 
CAS 

Google Scholar
 

Grubb DS, Wrigley SD, Freedman KE, Wei Y, Vazquez AR, Trotter RE, et al. Phage-2 study: supplemental bacteriophages extend Bifidobacterium animalis subsp. lactis BL04 benefits on gut health and microbiota in healthy adults. Nutrients. 2020;12(Suppl):2474.

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S, et al. Nonlinear dynamics of multi-omics profiles during human aging. Nat Aging. 2024;4:1619–34.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang H, Wang T, Qian C, Wang H, Yu D, Shi M, et al. Gut microbial-derived phenylacetylglutamine accelerates host cellular senescence. Nat Aging. 2025;5:401–18.

Article 
PubMed 
CAS 

Google Scholar
 

Tseng CH, Wong S, Yu J, Lee YY, Terauchi J, Lai HC, et al. Development of live biotherapeutic products: a position statement of Asia-Pacific Microbiota Consortium. Gut. 2025;74:706–13.

Article 
PubMed 

Google Scholar