Lagadinou ED, Sach A, Callahan K, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12:329–41. https://doi.org/10.1016/j.stem.2012.12.013.
Pan R, Hogdal LJ, Benito JM, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75. https://doi.org/10.1158/2159-8290.CD-13-0609.
DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29. https://doi.org/10.1056/NEJMoa2012971.
Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6:1106–17. https://doi.org/10.1158/2159-8290.CD-16-0313.
Sullivan GP, Flanagan L, Rodrigues DA, NÃ Chonghaile T. The path to venetoclax resistance is paved with mutations, metabolism, and more. Sci Transl Med. 2022;14:eabo6891. https://doi.org/10.1126/scitranslmed.abo6891.
Stevens BM, Jones CL, Pollyea DA, et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. Nat Cancer. 2020;1(12):1176–87. https://doi.org/10.1038/s43018-020-00126-z.
Zhang H, Nakauchi Y, Köhnke T, et al. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat Cancer. 2020;1:826–39. https://doi.org/10.1038/s43018-020-0103-x.
Kuusanmäki H, Dufva O, Vähä-Koskela M, et al. Erythroid/megakaryocytic differentiation confers BCL-XL dependency and venetoclax resistance in acute myeloid leukemia. Blood. 2023;141:1610–25. https://doi.org/10.1182/blood.2021011094.
Zeng AGX, Bansal S, Jin L, et al. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nat Med. 2022;28:1212–23. https://doi.org/10.1038/s41591-022-01819-x.
Kurtz SE, Eide CA, Kaempf A, et al. Associating drug sensitivity with differentiation status identifies effective combinations for acute myeloid leukemia. Blood Adv. 2022;6:3062–7. https://doi.org/10.1182/bloodadvances.2021006307.
Kuusanmäki H, Leppä A-M, Pölönen P, et al. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica. 2020;105:708–20. https://doi.org/10.3324/haematol.2018.214882.
Pei S, Pollyea DA, Gustafson A, et al. Monocytic subclones confer resistance to Venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10:536–51. https://doi.org/10.1158/2159-8290.CD-19-0710.
Zong L, Yin M, Kong J, et al. Development of a scoring system for predicting primary resistance to venetoclax plus hypomethylating agents (HMAs) in acute myeloid leukemia patients. Mol Carcinog. 2023;62:1572–84. https://doi.org/10.1002/mc.23600.
Zhao L, Yang J, Chen M, et al. Myelomonocytic and monocytic acute myeloid leukemia demonstrate comparable poor outcomes with venetoclax-based treatment: a monocentric real-world study. Ann Hematol. 2024;103:1197–209. https://doi.org/10.1007/s00277-024-05646-7.
Pei S, Shelton IT, Gillen AE, et al. A novel type of monocytic leukemia stem cell revealed by the clinical use of Venetoclax-based therapy. Cancer Discov. 2023;13:2032–49. https://doi.org/10.1158/2159-8290.CD-22-1297.
Lachowiez CA, Loghavi S, Zeng Z, et al. A phase Ib/II study of Ivosidenib with Venetoclax ± Azacitidine in IDH1-mutated myeloid malignancies. Blood Cancer Discov. 2023;4:276–93. https://doi.org/10.1158/2643-3230.BCD-22-0205.
Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 2014;15:243–56. https://doi.org/10.1038/nrm3772.
Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–50. https://doi.org/10.1038/nrm2329.
Ung J, Tan S-F, Fox TE, et al. Harnessing the power of sphingolipids: prospects for acute myeloid leukemia. Blood Rev. 2022;55:100950. https://doi.org/10.1016/j.blre.2022.100950.
Tan S-F, Liu X, Fox TE, et al. Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget. 2016;7:83208–22. https://doi.org/10.18632/oncotarget.13079.
Xie SZ, Garcia-Prat L, Voisin V, et al. Sphingolipid modulation activates proteostasis programs to govern human hematopoietic stem cell Self-Renewal. Cell Stem Cell. 2019;25:639–e6537. https://doi.org/10.1016/j.stem.2019.09.008.
Bottomly D, Long N, Schultz AR, et al. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell. 2022;40:850–e8649. https://doi.org/10.1016/j.ccell.2022.07.002.
Roh J, Pak H-K, Jeong S, et al. The comprehensive expression of BCL2 family genes determines the prognosis of diffuse large B-cell lymphoma. Biochem Biophys Res Commun. 2023;673:36–43. https://doi.org/10.1016/j.bbrc.2023.06.061.
Cancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de Novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74. https://doi.org/10.1056/NEJMoa1301689.
McNeer NA, Philip J, Geiger H, et al. Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia. 2019;33:1934–43. https://doi.org/10.1038/s41375-019-0402-3.
Leek JT, Johnson WE, Parker HS, et al. The Sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3. https://doi.org/10.1093/bioinformatics/bts034.
Liu Z, Liu L, Weng S, et al. Machine learning-based integration develops an immune-derived LncRNA signature for improving outcomes in colorectal cancer. Nat Commun. 2022;13:816. https://doi.org/10.1038/s41467-022-28421-6.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.
Yoon S-H, Choi S-W, Nam SW, et al. Preoperative immune landscape predisposes adverse outcomes in hepatocellular carcinoma patients with liver transplantation. NPJ Precis Oncol. 2021;5:27. https://doi.org/10.1038/s41698-021-00167-2.
Wu T, Hu E, Xu S, et al. Clusterprofiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2:100141. https://doi.org/10.1016/j.xinn.2021.100141.
Bosc C, Saland E, Bousard A, et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nat Cancer. 2021;2:1204–23. https://doi.org/10.1038/s43018-021-00264-y.
Lasry A, Nadorp B, Fornerod M, et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat Cancer. 2023;4:27–42. https://doi.org/10.1038/s43018-022-00480-0.
Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods. 2019;16:1289–96. https://doi.org/10.1038/s41592-019-0619-0.
van Galen P, Hovestadt V, Wadsworth Ii MH, et al. Single-Cell RNA-Seq reveals AML hierarchies relevant to disease progression and immunity. Cell. 2019;176:1265–e128124. https://doi.org/10.1016/j.cell.2019.01.031.
Gulati GS, Sikandar SS, Wesche DJ, et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science. 2020;367:405–11. https://doi.org/10.1126/science.aax0249.
Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6. https://doi.org/10.1038/nmeth.4463.
Li Y, Sung Y, Choi YE, et al. Synergistic enhancement of antitumor effects by combining abemaciclib with desipramine. Int J Mol Sci. 2024;25:7407. https://doi.org/10.3390/ijms25137407.
Jones CL, Stevens BM, Pollyea DA, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells. Cell Stem Cell. 2020;27:748–e7644. https://doi.org/10.1016/j.stem.2020.07.021.
DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17. https://doi.org/10.1182/blood-2018-08-868752.
Jones CL, Inguva A, Jordan CT. Targeting energy metabolism in cancer stem cells: progress and challenges in leukemia and solid tumors. Cell Stem Cell. 2021;28:378–93. https://doi.org/10.1016/j.stem.2021.02.013.
Mishra SK, Millman SE, Zhang L. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood. 2023;141:1119–35. https://doi.org/10.1182/blood.2022018092.
Zhai Y, Shen H, Wei H. A comprehensive metabolism-related gene signature predicts the survival of patients with acute myeloid leukemia. Genes. 2023;15:63. https://doi.org/10.3390/genes15010063.
Ren N, Wang J, Li R, et al. Prognostic implications of metabolism-related genes in acute myeloid leukemia. Front Genet. 2024;15:1424365. https://doi.org/10.3389/fgene.2024.1424365.
Qin H, Peng M, Cheng J, et al. A novel LGALS1-depended and immune-associated fatty acid metabolism risk model in acute myeloid leukemia stem cells. Cell Death Dis. 2024;15:482. https://doi.org/10.1038/s41419-024-06865-6.
Lo Presti C, Fauvelle F, Jacob M-C, et al. The metabolic reprogramming in acute myeloid leukemia patients depends on their genotype and is a prognostic marker. Blood Adv. 2021;5:156–66. https://doi.org/10.1182/bloodadvances.2020002981.
Lewis AC, Wallington-Beddoe CT, Powell JA, Pitson SM. Targeting sphingolipid metabolism as an approach for combination therapies in haematological malignancies. Cell Death Discov. 2018;4:72. https://doi.org/10.1038/s41420-018-0075-0.
Tan S-F, Pearson JM, Feith DJ, Loughran TP. The emergence of acid ceramidase as a therapeutic target for acute myeloid leukemia. Expert Opin Ther Targets. 2017;21:583–90. https://doi.org/10.1080/14728222.2017.1322065.
Lewis AC, Pope VS, Tea MN, et al. Ceramide-induced integrated stress response overcomes Bcl-2 inhibitor resistance in acute myeloid leukemia. Blood. 2022;139:3737–51. https://doi.org/10.1182/blood.2021013277.
Kao L-P, Morad SAF, Davis TS, et al. Chemotherapy selection pressure alters sphingolipid composition and mitochondrial bioenergetics in resistant HL-60 cells. J Lipid Res. 2019;60:1590–602. https://doi.org/10.1194/jlr.RA119000251.
Ricci C, Onida F, Ghidoni R. Sphingolipid players in the leukemia arena. Biochim Biophys Acta. 2006;1758:2121–32. https://doi.org/10.1016/j.bbamem.2006.06.016.
Khokhlatchev AV, Sharma A, Deering TG, et al. Ceramide nanoliposomes augment the efficacy of venetoclax and cytarabine in models of acute myeloid leukemia. FASEB J. 2022;36:e22514. https://doi.org/10.1096/fj.202200765R.
Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:175–91. https://doi.org/10.1038/nrm.2017.107.
Tan S-F, Dunton W, Liu X, et al. Acid ceramidase promotes drug resistance in acute myeloid leukemia through NF-κB-dependent P-glycoprotein upregulation. J Lipid Res. 2019;60:1078–86. https://doi.org/10.1194/jlr.M091876.
Pearson JM, Tan S-F, Sharma A, et al. Ceramide analog SACLAC modulates sphingolipid levels and Mcl-1 splicing to induce apoptosis in acute myeloid leukemia. Mol Cancer Res. 2020;18:352–63. https://doi.org/10.1158/1541-7786.MCR-19-0619.
Casson L, Howell L, Mathews LA, et al. Inhibition of ceramide metabolism sensitizes human leukemia cells to Inhibition of BCL2-like proteins. PLoS ONE. 2013;8:e54525. https://doi.org/10.1371/journal.pone.0054525.
Siskind LJ, Feinstein L, Yu T, et al. Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels. J Biol Chem. 2008;283:6622–30. https://doi.org/10.1074/jbc.M706115200.
Zhang T, Barclay L, Walensky LD, Saghatelian A. Regulation of mitochondrial ceramide distribution by members of the BCL-2 family. J Lipid Res. 2015;56:1501–10. https://doi.org/10.1194/jlr.M058750.
Chipuk JE, McStay GP, Bharti A, et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell. 2012;148:988–1000. https://doi.org/10.1016/j.cell.2012.01.038.
Anderson MA, Deng J, Seymour JF, et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood. 2016;127:3215–24. https://doi.org/10.1182/blood-2016-01-688796.
Hernández-Corbacho MJ, Salama MF, Canals D, et al. Sphingolipids in mitochondria. Biochimica et biophysica acta (BBA) -. Mol Cell Biology Lipids. 2017;1862:56–68. https://doi.org/10.1016/j.bbalip.2016.09.019.
Pyne S, Adams DR, Pyne NJ. Sphingosine 1-phosphate and sphingosine kinases in health and disease: recent advances. Prog Lipid Res. 2016;62:93–106. https://doi.org/10.1016/j.plipres.2016.03.001.
Sango J, Carcamo S, Sirenko M, et al. RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax. Nature. 2024;636:241–50. https://doi.org/10.1038/s41586-024-08137-x.
Wang Q, Zhang N, Liu L, et al. Comprehensive analysis of clinical prognostic features and tumor microenvironment landscape of CD11b + CD64 + patients with acute myeloid leukemia. Cell Oncol. 2023;46:1253–68. https://doi.org/10.1007/s13402-023-00808-7.
Waclawiczek A, Leppä A-M, Renders S, et al. Combinatorial BCL2 family expression in acute myeloid leukemia stem cells predicts clinical response to Azacitidine/Venetoclax. Cancer Discov. 2023;13:1408–27. https://doi.org/10.1158/2159-8290.CD-22-0939.