Garza M, Piquet AL. Update in autoimmune movement disorders: newly described antigen targets in autoimmune and paraneoplastic cerebellar ataxia. Front Neurol. 2021;12:683048.
Yaguchi H, Yabe I, Takahashi H, Okumura F, Takeuchi A, Horiuchi K, Kano T, Kanda A, Saito W, Matsumoto M, et al. Identification of anti-Sez6l2 antibody in a patient with cerebellar ataxia and retinopathy. J Neurol. 2014;261:224–6.
Borsche M, Hahn S, Hanssen H, Munchau A, Wandinger KP, Bruggemann N. Sez6l2-antibody-associated progressive cerebellar ataxia: a differential diagnosis of atypical parkinsonism. J Neurol. 2019;266:522–4.
Landa J, Guasp M, Petit-Pedrol M, Martinez-Hernandez E, Planaguma J, Saiz A, Ruiz-Garcia R, Garcia-Fernandez L, Verschuuren J, Saunders-Pullman R, et al. Seizure-related 6 homolog like 2 autoimmunity: neurologic syndrome and antibody effects. Neurol Neuroimmunol Neuroinflamm. 2021;8. https://doi.org/10.1212/NXI.0000000000000916.
Abe M, Yaguchi H, Kudo A, Nagai A, Shirai S, Takahashi-Iwata I, Matsushima M, Nakamura N, Isahaya K, Yamano Y, et al. Sez6l2 autoimmunity in a large cohort study. J Neurol Neurosurg Psychiatry. 2023;94:667–8.
Kather A, Holtbernd F, Brunkhorst R, Hasan D, Markewitz R, Wandinger KP, Wiesmann M, Schulz JB, Tauber SC. Anti-SEZ6L2 antibodies in paraneoplastic cerebellar syndrome: case report and review of the literature. Neurol Res Pract. 2022;4:54.
Liu M, Ren H, Wang L, Fan S, Bai L, Guan H. Prognostic and relapsing factors of primary autoimmune cerebellar ataxia: a prospective cohort study. J Neurol. 2023. https://doi.org/10.1007/s00415-023-12128-9.
Matsuyama Y, Satake M, Abe M, Yaguchi H, Yabe I. [A case of Seizure-related 6 homolog like 2 (Sez6l2) antibody-associated autoimmune cerebellar ataxia]. Rinsho Shinkeigaku. 2023;63:665–71.
McKeon A, Lesnick C, Vorasoot N, Buckley MW, Dasari S, Flanagan EP, et al. Utility of protein microarrays for detection of classified and novel antibodies in autoimmune neurologic disease. Neurol Neuroimmunol Neuroinflamm. 2023. https://doi.org/10.1212/NXI.0000000000200145.
Mehdiyeva A, Hietaharju A, Sipila J. SEZ6L2 antibody-associated cerebellar ataxia responsive to sequential immunotherapy. Neurol Neuroimmunol Neuroinflamm. 2022. https://doi.org/10.1212/NXI.0000000000001131.
Reis Carneiro D, Maresch A, Cunha R, Morgadinho A. Sez6l2-associated encephalitis in a patient with small-cell lung cancer. Neurol Sci. 2022;43:6131–3.
Shen D, Zhou Q, Meng H, Zhang M, Peng L, Chen S. Image features of anti-SEZ6L2 encephalitis, a rare cause of ataxia and parkinsonism. J Neurol. 2023;270:4549–53.
Liu M, Ren H, Yao D, Yao M, Jiang N, Fan S, Guan H. Autoimmune cerebellar ataxia associated with anti-SEZ6L2 antibody: report of three cases. J Neurol. 2025;272:127.
Stutzer I, Selevsek N, Esterhazy D, Schmidt A, Aebersold R, Stoffel M. Systematic proteomic analysis identifies beta-site amyloid precursor protein cleaving enzyme 2 and 1 (BACE2 and BACE1) substrates in pancreatic beta-cells. J Biol Chem. 2013;288:10536–47.
Herber J, Njavro J, Feederle R, Schepers U, Muller UC, Brase S, et al. Click chemistry-mediated biotinylation reveals a function for the protease BACE1 in modulating the neuronal surface glycoproteome. Mol Cell Proteom. 2018;17:1487–501.
Miyazaki T, Hashimoto K, Uda A, Sakagami H, Nakamura Y, Saito SY, Nishi M, Kume H, Tohgo A, Kaneko I, et al. Disturbance of cerebellar synaptic maturation in mutant mice lacking BSRPs, a novel brain-specific receptor-like protein family. FEBS Lett. 2006;580:4057–64.
Nash A, Aumann TD, Pigoni M, Lichtenthaler SF, Takeshima H, Munro KM, et al. Lack of Sez6 family proteins impairs motor functions, short-term memory, and cognitive flexibility and alters dendritic spine properties. Cereb Cortex. 2020;30:2167–84.
Gunnersen JM, Kim MH, Fuller SJ, De Silva M, Britto JM, Hammond VE, Davies PJ, Petrou S, Faber ES, Sah P, Tan SS. Sez-6 proteins affect dendritic arborization patterns and excitability of cortical pyramidal neurons. Neuron. 2007;56:621–39.
Zhu K, Xiang X, Filser S, Marinkovic P, Dorostkar MM, Crux S, Neumann U, Shimshek DR, Rammes G, Haass C, et al. Beta-Site amyloid precursor protein cleaving enzyme 1 Inhibition impairs synaptic plasticity via seizure protein 6. Biol Psychiatry. 2018;83:428–37.
Shepard CJ, Cline SG, Hinds D, Jahanbakhsh S, Prokop JW. Breakdown of multiple sclerosis genetics to identify an integrated disease network and potential variant mechanisms. Physiol Genomics. 2019;51:562–77.
Yang W, Tang H, Zhang Y, Tang X, Zhang J, Sun L, Yang J, Cui Y, Zhang L, Hirankarn N, et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet. 2013;92:41–51.
Ramos PS, Shaftman SR, Ward RC, Langefeld CD. Genes associated with SLE are targets of recent positive selection. Autoimmune Dis. 2014;2014:203435.
Andlauer TF, Buck D, Antony G, Bayas A, Bechmann L, Berthele A, Chan A, Gasperi C, Gold R, Graetz C, et al. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Sci Adv. 2016;2:e1501678.
Cheng F, Feng Y, Yang X, Flanagan M, Chen X, Bonakdarpour B, Jamshidi P, Castellani R, Mao Q, Chu X, et al. Genomic and epigenomic insights into purkinje and granule neurons in Alzheimer’s disease and related dementia using single-nucleus multiome analysis. Res Sq. 2025. https://doi.org/10.21203/rs.3.rs-6264481/v1.
Kim SW, Lee H, Song DY, Lee GH, Ji J, Park JW, et al. Whole genome sequencing analysis identifies sex differences of familial pattern contributing to phenotypic diversity in autism. Genome Med. 2024;16:114.
Lim ET, Uddin M, De Rubeis S, Chan Y, Kamumbu AS, Zhang X, D’Gama AM, Kim SN, Hill RS, Goldberg AP, et al. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat Neurosci. 2017;20:1217–24.
Zhou X, Feliciano P, Shu C, Wang T, Astrovskaya I, Hall JB, et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat Genet. 2022;54:1305–19.
Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148:1223–41.
Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358:667–75.
Kumar RA, Marshall CR, Badner JA, Babatz TD, Mukamel Z, Aldinger KA, Sudi J, Brune CW, Goh G, Karamohamed S, et al. Association and mutation analyses of 16p11.2 autism candidate genes. PLoS ONE. 2009;4:e4582.
Konyukh M, Delorme R, Chaste P, Leblond C, Lemiere N, Nygren G, Anckarsater H, Rastam M, Stahlberg O, Amsellem F, et al. Variations of the candidate SEZ6L2 gene on chromosome 16p11.2 in patients with autism spectrum disorders and in human populations. PLoS ONE. 2011;6:e17289.
Stoop MP, Runia TF, Stingl C, van der Vuurst de Vries RM, Luider TM, Hintzen RQ. Decreased Neuro-Axonal Proteins in CSF at First Attack of Suspected Multiple Sclerosis. Proteomics Clin Appl. 2017;11:11–12.
Guldbrandsen A, Lereim RR, Jacobsen M, Garberg H, Kroksveen AC, Barsnes H, Berven FS. Development of robust targeted proteomics assays for cerebrospinal fluid biomarkers in multiple sclerosis. Clin Proteom. 2020;17:33.
Torretta E, Arosio B, Barbacini P, Capitanio D, Rossi PD, Moriggi M, et al. Novel insight in idiopathic normal pressure hydrocephalus (iNPH) biomarker discovery in CSF. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22158034.
Qiu WQ, Luo S, Ma SA, Saminathan P, Li H, Gunnersen JM, et al. The Sez6 family inhibits complement by facilitating factor I cleavage of C3b and accelerating the decay of C3 convertases. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.607641.
Boonen M, Staudt C, Gilis F, Oorschot V, Klumperman J, Jadot M. Cathepsin D and its newly identified transport receptor SEZ6L2 can modulate neurite outgrowth. J Cell Sci. 2016;129:557–68.
Yaguchi H, Yabe I, Takahashi H, Watanabe M, Nomura T, Kano T, Matsumoto M, Nakayama KI, Watanabe M, Hatakeyama S. Sez6l2 regulates phosphorylation of ADD and neuritogenesis. Biochem Biophys Res Commun. 2017;494:234–41.
Yaguchi H, Yabe I, Takahashi H, Watanabe M, Nomura T, Kano T, Watanabe M, Hatakeyama S. Anti-Sez6l2 antibody detected in a patient with immune-mediated cerebellar ataxia inhibits complex formation of GluR1 and Sez6l2. J Neurol. 2018;265:962–5.
Kaabinejadian S, Barra C, Alvarez B, Yari H, Hildebrand WH, Nielsen M. Accurate MHC motif deconvolution of immunopeptidomics data reveals a significant contribution of DRB3, 4 and 5 to the total DR immunopeptidome. Front Immunol. 2022;13:835454.
Kozareva V, Martin C, Osorno T, Rudolph S, Guo C, Vanderburg C, Nadaf N, Regev A, Regehr WG, Macosko E. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature. 2021;598:214–9.
Tarhan L, Bistline J, Chang J, Galloway B, Hanna E, Weitz E. Single cell portal: an interactive home for single-cell genomics data. bioRxiv. 2023:2023.2007.2013.548886.
Yu X, Petersen F. A methodological review of induced animal models of autoimmune diseases. Autoimmun Rev. 2018;17:473–9.
Duechting A, Przybyla A, Kuerten S, Lehmann PV. Delayed activation kinetics of Th2- and Th17 cells compared to Th1 cells. Cells. 2017. https://doi.org/10.3390/cells6030029.
Freen-van Heeren JJ. Post-transcriptional control of T-cell cytokine production: implications for cancer therapy. Immunology. 2021;164:57–72.
Yu SF, Zhang YN, Yang BY, Wu CY. Human memory, but not naive, CD4 + T cells expressing transcription factor T-bet might drive rapid cytokine production. J Biol Chem. 2014;289:35561–9.
Angelini G, Bani A, Constantin G, Rossi B. The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front Cell Neurosci. 2023;17:1101379.