Richardson, D. B. et al. Cancer mortality after low dose exposure to ionising radiation in workers in France, the United Kingdom, and the United States (INWORKS): cohort study. BMJ 382, e074520 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

El Ghissassi, F. et al. A review of human carcinogens—part D: radiation. Lancet Oncol. 10, 751–752 (2009).

Article 
PubMed 

Google Scholar
 

Bosch de Basea Gomez, M. et al. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults. Nat. Med. 29, 3111–3119 (2023).

Article 
CAS 

Google Scholar
 

Little, M. P. et al. Ionising radiation and cardiovascular disease: systematic review and meta-analysis. BMJ 380, e072924 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chandra, R. A., Keane, F. K., Voncken, F. E. M. & Thomas, C. R. Contemporary radiotherapy: present and future. Lancet 398, 171–184 (2021).

Article 
PubMed 

Google Scholar
 

Adam, A. & Kenny, L. M. Interventional oncology in multidisciplinary cancer treatment in the 21(st) century. Nat. Rev. Clin. Oncol. 12, 105–113 (2015).

Article 
PubMed 

Google Scholar
 

Giri, J. et al. Interventional therapies for acute pulmonary embolism: current status and principles for the development of novel evidence: a scientific statement from the American Heart Association. Circulation 140, e774–e801 (2019).

Article 
PubMed 

Google Scholar
 

Einstein, A. J. Medical imaging: the radiation issue. Nat. Rev. Cardiol. 6, 436–438 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cai, Y., Wang, J., Yuille, A., Zhou, Z. & Wang, A. Structure-aware sparse-view X-ray 3d reconstruction. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11174–11183 (IEEE, 2024).

Siow, T. Y., Ma, C.-Y. & Toh, C. H. Angular super-resolution in X-ray projection radiography using deep neural network: implementation on rotational angiography. Biomed. J. 46, 154–162 (2023).

Article 
PubMed 

Google Scholar
 

Zhao, H. et al. Self-supervised learning enables 3D digital subtraction angiography reconstruction from ultra-sparse 2D projection views: a multicenter study. Cell Rep. Med. 3, 100775 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ueda, D. et al. Deep learning-based angiogram generation model for cerebral angiography without misregistration artifacts. Radiology 299, 675–681 (2021).

Article 
PubMed 

Google Scholar
 

Wang, L., Dou, Q., Fletcher, P. T., Speidel, S. & Li, S. (eds). NAF: neural attenuation fields for sparse-view CBCT reconstruction. Proc. Medical Image Computing and Computer Assisted Intervention—MICCAI 2022 442–452 (Springer, 2022).

Liu, Z. et al. Geometry-aware attenuation learning for sparse-view CBCT reconstruction. IEEE Trans. Med. Imaging 44, 1083–1097 (2025).

Article 
PubMed 

Google Scholar
 

Greenspan, H. et al. (eds). Learning deep intensity field for extremely sparse-view CBCT reconstruction. Proc. Medical Image Computing and Computer Assisted Intervention—MICCAI 2023 13–23 (Springer, 2023).

De Bruijne, M. et al. (eds). Estimation of high framerate digital subtraction angiography sequences at low radiation dose. Proc. Medical Image Computing and Computer Assisted Intervention—MICCAI 2021 171–180 (Springer, 2021).

Tang, Z. et al. Radiation reduction for interventional radiology imaging: a video frame interpolation solution. Insights Imaging 15, 42 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

OpenAI et al. GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).

Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).

Brooks, T. et al. Video generation models as world simulators. OpenAI openai.com/index/video-generation-models-as-world-simulators/ (2024).

Zhao, H. et al. Large-scale pretrained frame generative model enables real-time low-dose DSA imaging: an AI system development and multi-center validation study. Med 6, 100497 (2025).

Article 
PubMed 

Google Scholar
 

Pan, Y., Ye, Y., Zhang, Y., Xia, Y. & Shen, D. Draw sketch, draw flesh: whole-body computed tomography from any X-ray views. Int. J. Comput. Vis. 133, 2505–2526 (2024).

Article 

Google Scholar
 

Brendlin, A. S. et al. Novel deep learning denoising enhances image quality and lowers radiation exposure in interventional bronchial artery embolization cone beam CT. Acad. Radiol. 31, 2144–2155 (2024).

Article 
PubMed 

Google Scholar
 

Zhang, M., Gu, S. & Shi, Y. The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review. Complex Intell. Syst. 8, 5545–5561 (2022).

Article 

Google Scholar
 

Xu, Z., Zhao, H., Liu, W. & Wang, X. GaraMoSt: parallel multi-granularity motion and structural modeling for efficient multi-frame interpolation in DSA images. In Proc. AAAI Conference on Artificial Intelligence 28530–28538 (AAAI, 2025).

Xu, Z. et al. MoSt-DSA: modeling motion and structural interactions for direct multi-frame interpolation in DSA images. In European Conference on Artificial Intelligence (2024).

Zucker, E. J., Sandino, C. M., Kino, A., Lai, P. & Vasanawala, S. S. Free-breathing accelerated cardiac mri using deep learning: validation in children and young adults. Radiology 300, 539–548 (2021).

Article 
PubMed 

Google Scholar
 

Rastogi, A. et al. Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study. Lancet Oncol. 25, 400–410 (2024).

Article 
PubMed 

Google Scholar
 

Koetzier, L. R. et al. Deep learning image reconstruction for CT: technical principles and clinical prospects. Radiology 306, e221257 (2023).

Article 
PubMed 

Google Scholar
 

Zhou, W., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).

Article 

Google Scholar
 

Piaggio, G., Elbourne, D. R., Pocock, S. J., Evans, S. J. W. & Altman, D. G. Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement. JAMA 308, 2594–2604 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J. & Denniston, A. K. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

CONSORT-AI and SPIRIT-AI Steering Group. Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed. Nat. Med. 25, 1467–1468 (2019).

Article 

Google Scholar
 

Heidari, S., Babor, T. F., de Castro, P., Tort, S. & Curno, M. Sex and gender equity in research: rationale for the SAGER guidelines and recommended use. Res. Integr. Peer Rev. 1, 2 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Freidlin, B., Korn, E. L., George, S. L. & Gray, R. Randomized clinical trial design for assessing noninferiority when superiority is expected. J. Clin. Oncol. 25, 5019–5023 (2007).

Article 
PubMed 

Google Scholar
 

Tannock, I. F. et al. The tyranny of non-inferiority trials. Lancet Oncol. 25, e520–e525 (2024).

Article 
PubMed 

Google Scholar
 

Hendee, W. R. & Edwards, F. M. ALARA and an integrated approach to radiation protection. Semin. Nucl. Med. 16, 142–150 (1986).

Article 
CAS 
PubMed 

Google Scholar
Â