Ran, J. et al. Global, regional, and national burden of heart failure and its underlying causes, 1990–2021: results from the global burden of disease study 2021. Biomark. Res. 13, 16 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chatterjee, N., Gim, J. & Choi, J. Epigenetic profiling to environmental stressors in model and non-model organisms: ecotoxicology perspective. Environ. Health Toxicol. 33, e2018015 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hala, D., Huggett, D. & Burggren, W. Environmental stressors and the epigenome. Drug Discov. Today Technol. 12, e3–e8 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Perera, F. & Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 31, 363–373 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14, 1847–1850 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Daiber, A. et al. The “exposome” concept — how environmental risk factors influence cardiovascular health. Acta Biochim. Pol. 66, 269–283 (2019).

CAS 
PubMed 

Google Scholar
 

Münzel, T., Sørensen, M., Hahad, O., Nieuwenhuijsen, M. & Daiber, A. The contribution of the exposome to the burden of cardiovascular disease. Nat. Rev. Cardiol. 20, 651–669 (2023).

Article 
PubMed 

Google Scholar
 

Khraishah, H., Chen, Z. & Rajagopalan, S. Understanding the cardiovascular and metabolic health effects of air pollution in the context of cumulative exposomic impacts. Circ. Res. 134, 1083–1097 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rajagopalan, S., Al-Kindi, S. G. & Brook, R. D. Air pollution and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2054–2070 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Khraishah, H. et al. Climate change and cardiovascular disease: implications for global health. Nat. Rev. Cardiol. 19, 798–812 (2022).

Article 
PubMed 

Google Scholar
 

Münzel, T. et al. Environmental noise and the cardiovascular system. J. Am. Coll. Cardiol. 71, 688–697 (2018).

Article 
PubMed 

Google Scholar
 

Zielinska-Dabkowska, K. M., Schernhammer, E. S., Hanifin, J. P. & Brainard, G. C. Reducing nighttime light exposure in the urban environment to benefit human health and society. Science 380, 1130–1135 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Martinez-Morata, I. et al. Associations between urinary metal levels and incident heart failure: a multi-cohort analysis. JACC Heart Fail. 13, 102510 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Lamas, G. A. et al. Contaminant metals as cardiovascular risk factors: a scientific statement from the American Heart Association. J. Am. Heart Assoc. 12, e029852 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hahad, O., Al-Kindi, S., Lelieveld, J., Münzel, T. & Daiber, A. Supporting and implementing the beneficial parts of the exposome: the environment can be the problem, but it can also be the solution. Int. J. Hyg. Environ. Health 255, 114290 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, K., Brook, R. D., Li, Y., Rajagopalan, S. & Kim, J. B. Air pollution, built environment, and early cardiovascular disease. Circ. Res. 132, 1707–1724 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rajagopalan, S. et al. The urban environment and cardiometabolic health. Circulation 149, 1298–1314 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ji, L.-D., Tang, N. L. S., Xu, Z. F. & Xu, J. Genes regulate blood pressure, but “environments” cause hypertension. Front. Genet. 11, 580443 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Øvretveit, K. et al. Polygenic interactions with environmental exposures in blood pressure regulation: the HUNT study. J. Am. Heart Assoc. 13, e034612 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Keaton, J. M. et al. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat. Genet. 56, 778–791 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pazoki, R. et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137, 653–661 (2018).

Article 
PubMed 

Google Scholar
 

Wu, H., Eckhardt, C. M. & Baccarelli, A. A. Molecular mechanisms of environmental exposures and human disease. Nat. Rev. Genet. 24, 332–344 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baccarelli, A., Dolinoy, D. C. & Walker, C. L. A precision environmental health approach to prevention of human disease. Nat. Commun. 14, 2449 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tanwar, V. et al. PM2.5 exposure in utero contributes to neonatal cardiac dysfunction in mice. Environ. Pollut. 230, 116–124 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tanwar, V. et al. In utero particulate matter exposure produces heart failure, electrical remodeling, and epigenetic changes at adulthood. J. Am. Heart Assoc. 6, e005796 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ho, F. K. et al. A proteomics-based approach for prediction of different cardiovascular diseases and dementia. Circulation 151, 277–287 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Government of Canada. Human Health Risk Assessment for Ambient Nitrogen Dioxide https://www.canada.ca/en/health-canada/services/publications/healthy-living/human-health-risk-assessment-ambient-nitrogen-dioxide.html (2016).

Public Health England. Associations of Long-term Average Concentrations of Nitrogen Dioxide with Mortality (2018): COMEAP Summary https://www.gov.uk/government/publications/nitrogen-dioxide-effects-on-mortality/associations-of-long-term-average-concentrations-of-nitrogen-dioxide-with-mortality-2018-comeap-summary (2018).

United States Environmental Protection Agency. Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (Final Report, Jan 2016) https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=310879 (2016).

Thurston, G. D. et al. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Env. Health Perspect. 124, 785–794 (2016).

Article 
CAS 

Google Scholar
 

Eminson, K. et al. Does air pollution confound associations between environmental noise and cardiovascular outcomes? — A systematic review. Env. Res. 232, 116075 (2023).

Article 
CAS 

Google Scholar
 

Rajagopalan, S. & Landrigan, P. J. Pollution and the heart. N. Engl. J. Med. 385, 1881–1892 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Abohashem, S. et al. A leucopoietic-arterial axis underlying the link between ambient air pollution and cardiovascular disease in humans. Eur. Heart J. 42, 761–772 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kuntic, M. et al. Differential inflammation, oxidative stress and cardiovascular damage markers of nano- and micro-particle exposure in mice: implications for human disease burden. Redox Biol. 83, 103644 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wold, L. E. et al. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ. Heart Fail. 5, 452–461 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Q. et al. Potential molecular mechanism of cardiac hypertrophy in mice induced by exposure to ambient PM2. 5. Ecotoxicol. Environ. Saf. 224, 112659 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Wu, T. et al. PM2.5-induced programmed myocardial cell death via mPTP opening results in deteriorated cardiac function in HFpEF mice. Cardiovasc. Toxicol. 22, 746–762 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Mills, N. L. et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N. Engl. J. Med. 357, 1075–1082 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Langrish, J. P. et al. Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man. J. Am. Heart Assoc. 2, e004309 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lucking, A. J. et al. Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123, 1721–1728 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Shah, A. S. et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382, 1039–1048 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jia, Y. et al. Effect of air pollution on heart failure: systematic review and meta-analysis. Env. Health Perspect. 131, 76001 (2023).

Article 
CAS 

Google Scholar
 

Wang, M. et al. Joint exposure to various ambient air pollutants and incident heart failure: a prospective analysis in UK Biobank. Eur. Heart J. 42, 1582–1591 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bai, L. et al. Exposure to ambient air pollution and the incidence of congestive heart failure and acute myocardial infarction: a population-based study of 5.1 million Canadian adults living in Ontario. Env. Int. 132, 105004 (2019).

Article 
CAS 

Google Scholar
 

Ward-Caviness, C. K. et al. Long-term exposure to particulate air pollution is associated with 30-day readmissions and hospital visits among patients with heart failure. J. Am. Heart Assoc. 10, e019430 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mentias, A. et al. Ambient air pollution exposure and adverse outcomes among medicare beneficiaries with heart failure. J. Am. Heart Assoc. 13, e032902 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Al-Kindi, S. G. et al. Ambient air pollution and mortality after cardiac transplantation. J. Am. Coll. Cardiology 74, 3026–3035 (2019).

Article 
CAS 

Google Scholar
 

Vieira, J. L. et al. Respiratory filter reduces the cardiovascular effects associated with diesel exhaust exposure: a randomized, prospective, double-blind, controlled study of heart failure: the FILTER-HF trial. JACC Heart Fail. 4, 55–64 (2016).

Article 
PubMed 

Google Scholar
 

Vieira, J. L., Guimaraes, G. V., de Andre, P. A., Saldiva, P. H. & Bocchi, E. A. Effects of reducing exposure to air pollution on submaximal cardiopulmonary test in patients with heart failure: analysis of the randomized, double-blind and controlled FILTER-HF trial. Int. J. Cardiol. 215, 92–97 (2016).

Article 
PubMed 

Google Scholar
 

Rajagopalan, S. et al. Toward heart-healthy and sustainable cities: a policy statement from the American Heart Association. Circulation 149, e1067–e1089 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hahad, O. et al. Noise and air pollution as risk factors for hypertension: part. I-epidemiology. Hypertension 80, 1375–1383 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Hahad, O. et al. Noise and air pollution as risk factors for hypertension: part. II-pathophysiologic insight. Hypertension 80, 1384–1392 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Münzel, T., Sørensen, M. & Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol 18, 619–636 (2021).

Article 
PubMed 

Google Scholar
 

Hahad, O. et al. Cerebral consequences of environmental noise exposure. Environ. Int. 165, 107306 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Fu, X. et al. Long-term exposure to traffic noise and risk of incident cardiovascular diseases: a systematic review and dose-response meta-analysis. J. Urban Health 100, 788–801 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Heritier, H. et al. Transportation noise exposure and cardiovascular mortality: a nationwide cohort study from Switzerland. Eur. J. Epidemiol. 32, 307–315 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Vienneau, D. et al. Transportation noise exposure and cardiovascular mortality: 15-years of follow-up in a nationwide prospective cohort in Switzerland. Env. Int. 158, 106974 (2022).

Article 

Google Scholar
 

Thacher, J. D. et al. Exposure to transportation noise and risk for cardiovascular disease in a nationwide cohort study from Denmark. Env. Res. 211, 113106 (2022).

Article 
CAS 

Google Scholar
 

Yang, T. et al. Long-term exposure to road traffic noise and incident heart failure: evidence from UK Biobank. JACC Heart Fail. 11, 986–996 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Seidler, A. et al. Aircraft, road and railway traffic noise as risk factors for heart failure and hypertensive heart disease — a case-control study based on secondary data. Int. J. Hyg. Env. Health 219, 749–758 (2016).

Article 

Google Scholar
 

Bai, L. et al. Exposure to road traffic noise and incidence of acute myocardial infarction and congestive heart failure: a population-based cohort study in Toronto, Canada. Env. Health Perspect. 128, 87001 (2020).

Article 
CAS 

Google Scholar
 

Topriceanu, C. C. et al. Higher aircraft noise exposure is linked to worse heart structure and function by cardiovascular MRI. J. Am. Coll. Cardiol. 85, 454–469 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Davies, H. W., Vlaanderen, J. J., Henderson, S. B. & Brauer, M. Correlation between co-exposures to noise and air pollution from traffic sources. Occup. Env. Med. 66, 347–350 (2009).

Article 
CAS 

Google Scholar
 

Gale, J. E. et al. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J. Biol. Rhythm. 26, 423–433 (2011).

Article 

Google Scholar
 

Kurose, T., Yabe, D. & Inagaki, N. Circadian rhythms and diabetes. J. Diabetes Investig. 2, 176–177 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Qian, J., Yeh, B., Rakshit, K., Colwell, C. S. & Matveyenko, A. V. Circadian disruption and diet-induced obesity synergize to promote development of beta-cell failure and diabetes in male rats. Endocrinology 156, 4426–4436 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gamble, K. L., Berry, R., Frank, S. J. & Young, M. E. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 10, 466–475 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stenvers, D. J., Scheer, F., Schrauwen, P., la Fleur, S. E. & Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 15, 75–89 (2019).

Article 
PubMed 

Google Scholar
 

Cribbet, M. R. et al. Circadian rhythms and metabolism: from the brain to the gut and back again. Ann. N. Y. Acad. Sci. 1385, 21–40 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Masri, S. & Sassone-Corsi, P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat. Rev. Neurosci. 14, 69–75 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Masri, S., Zocchi, L., Katada, S., Mora, E. & Sassone-Corsi, P. The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann. N. Y. Acad. Sci. 1264, 103–109 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Patel, V. R., Eckel-Mahan, K., Sassone-Corsi, P. & Baldi, P. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nat. Methods 9, 772–773 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Zubidat, A. E. & Haim, A. Artificial light-at-night — a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J. Basic Clin. Physiol. Pharmacol. 28, 295–313 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Palanivel, R. et al. Exposure to air pollution disrupts circadian rhythm through alterations in chromatin dynamics. iScience 23, 101728 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, C. et al. Shift work, genetic factors, and the risk of heart failure: a prospective study of the UK biobank. Mayo Clin. Proc. 97, 1134–1144 (2022).

Article 
PubMed 

Google Scholar
 

Li, X., He, Y., Wang, D. & Momeni, M. R. Chronobiological disruptions: unravelling the interplay of shift work, circadian rhythms, and vascular health in the context of stroke risk. Clin. Exp. Med. 25, 6 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lane, K. J. et al. Associations between greenness, impervious surface area, and nighttime lights on biomarkers of vascular aging in Chennai, India. Env. Health Perspect. 125, 087003 (2017).

Article 

Google Scholar
 

Zhang, J. et al. Role of nighttime light in the association between air pollution exposure and cardiovascular disease. J. Am. Heart Assoc. 14, e042835 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liang, X. et al. Outdoor light at night and mortality in the UK Biobank: a prospective cohort study. Occup. Env. Med. https://doi.org/10.1136/oemed-2023-109036 (2023).

Article 

Google Scholar
 

Martinez-Morata, I. et al. Association of urinary metals with cardiovascular disease incidence and all-cause mortality in the multi-ethnic study of atherosclerosis (MESA). Circulation 150, 758–769 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

McGraw, K. E. et al. Urinary metal levels and coronary artery calcification: longitudinal evidence in the multi-ethnic study of atherosclerosis. J. Am. Coll. Cardiol. 84, 1545–1557 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A. & Chowdhuri, D. K. Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262, 128350 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Borne, Y. et al. Cadmium exposure and incidence of heart failure and atrial fibrillation: a population-based prospective cohort study. BMJ Open 5, e007366 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Peters, J. L., Perlstein, T. S., Perry, M. J., McNeely, E. & Weuve, J. Cadmium exposure in association with history of stroke and heart failure. Env. Res. 110, 199–206 (2010).

Article 
CAS 

Google Scholar
 

Vaziri, N. D. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiology 295, H454–H465 (2008).

Article 
CAS 

Google Scholar
 

Navas-Acien, A., Guallar, E., Silbergeld, E. K. & Rothenberg, S. J. Lead exposure and cardiovascular disease — a systematic review. Env. Health Perspect. 115, 472–482 (2007).

Article 
CAS 

Google Scholar
 

Yang, W. Y. et al. Left ventricular structure and function in relation to environmental exposure to lead and cadmium. J. Am. Heart Assoc. 6, e004692 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bello, K. A. et al. Chronic exposure to mercury increases arrhythmia and mortality post-acute myocardial infarction in rats. Front. Physiol. 14, 1260509 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xing, X. et al. Association of selenium and cadmium with heart failure and mortality based on the National Health and Nutrition Examination Survey. J. Hum. Nutr. Diet. 36, 1496–1506 (2023).

Article 
PubMed 

Google Scholar
 

Sears, C. G. et al. Urinary cadmium and incident heart failure: a case-cohort analysis among never-smokers in Denmark. Epidemiology 33, 185–192 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lieberman-Cribbin, W. et al. Relationship between urinary uranium and cardiac geometry and left ventricular function: the Strong Heart study. JACC Adv. 3, 101408 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pichler, G. et al. Association of arsenic exposure with cardiac geometry and left ventricular function in young adults. Circ. Cardiovasc. Imaging 12, e009018 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

George, C. M. et al. Effect of an arsenic mitigation program on arsenic exposure in American Indian communities: a cluster randomized controlled trial of the community-led Strong Heart Water Study program. Env. Health Perspect. 132, 37007 (2024).

Article 
CAS 

Google Scholar
 

Lamas, G. A. et al. Edetate disodium-based chelation for patients with a previous myocardial infarction and diabetes: TACT2 randomized clinical trial. JAMA 332, 794–803 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ravalli, F. et al. Chelation therapy in patients with cardiovascular disease: a systematic review. J. Am. Heart Assoc. 11, e024648 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chowdhury, R. et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 362, k3310 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Alahmad, B. et al. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation 147, 35–46 (2023).

Article 
PubMed 

Google Scholar
 

Achebak, H. et al. Ambient temperature and risk of cardiovascular and respiratory adverse health outcomes: a nationwide cross-sectional study from Spain. Eur. J. Prev. Cardiol. 31, 1080–1089 (2024).

Article 
PubMed 

Google Scholar
 

Singh, N. et al. Heat and cardiovascular mortality: an epidemiological perspective. Circ. Res. 134, 1098–1112 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

de Schrijver, E. et al. Nationwide projections of heat- and cold-related mortality impacts under various climate change and population development scenarios in Switzerland. Env. Res. Lett. 18, 094010 (2023).

Article 

Google Scholar
 

Mugele, H. et al. Control of blood pressure in the cold: differentiation of skin and skeletal muscle vascular resistance. Exp. Physiol. 108, 38–49 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Kim, J. & Kim, H. Influence of ambient temperature and diurnal temperature range on incidence of cardiac arrhythmias. Int. J. Biometeorol. 61, 407–416 (2017).

Article 
PubMed 

Google Scholar
 

Meade, R. D. et al. Meta-analysis of heat-induced changes in cardiac function from over 400 laboratory-based heat exposure studies. Nat. Commun. 16, 2543 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cui, J. et al. Effects of heat stress on thermoregulatory responses in congestive heart failure patients. Circulation 112, 2286–2292 (2005).

Article 
PubMed 

Google Scholar
 

Green, D. J. et al. Impaired skin blood flow response to environmental heating in chronic heart failure. Eur. Heart J. 27, 338–343 (2006).

Article 
PubMed 

Google Scholar
 

Wilker, E. H. et al. Ambient temperature and biomarkers of heart failure: a repeated measures analysis. Env. Health Perspect. 120, 1083–1087 (2012).

Article 
CAS 

Google Scholar
 

Qiu, H. et al. Is greater temperature change within a day associated with increased emergency hospital admissions for heart failure? Circ. Heart Fail. 6, 930–935 (2013).

Article 
PubMed 

Google Scholar
 

Pan, R. et al. Association between ambient temperature and cause-specific cardiovascular disease admissions in Japan: a nationwide study. Env. Res. 225, 115610 (2023).

Article 
CAS 

Google Scholar
 

Jimba, T. et al. Association of ambient temperature and acute heart failure with preserved and reduced ejection fraction. ESC Heart Fail. 9, 2899–2908 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Munzel, T. et al. Challenges posed by climate hazards to cardiovascular health and cardiac intensive care: implications for mitigation and adaptation. Eur. Heart J. Acute Cardiovasc. Care 13, 731–744 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Vishram-Nielsen, J. K. et al. Association between the incidence of hospitalizations for acute cardiovascular events, weather, and air pollution. JACC Adv. 2, 100334 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shih, H.-I. et al. Increased medical visits and mortality among adults with cardiovascular diseases in severely affected areas after Typhoon Morakot. Int. J. Environ. Res. Public Health 17, 6531 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yan, M. et al. Tropical cyclone exposures and risks of emergency medicare hospital admission for cardiorespiratory diseases in 175 urban United States counties, 1999–2010. Epidemiology 32, 315–326 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Danesh Yazdi, M. et al. The effect of long-term exposure to air pollution and seasonal temperature on hospital admissions with cardiovascular and respiratory disease in the United States: a difference-in-differences analysis. Sci. Total. Env. 843, 156855 (2022).

Article 
CAS 

Google Scholar
 

Nieuwenhuijsen, M. J. Green infrastructure and health. Annu. Rev. Public Health 42, 317–328 (2021).

Article 
PubMed 

Google Scholar
 

Pereira, G. et al. The association between neighborhood greenness and cardiovascular disease: an observational study. BMC Public Health 12, 466 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yeager, R. et al. Association between residential greenness and cardiovascular disease risk. J. Am. Heart Assoc. 7, e009117 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dazard, J. E. et al. Association of genetic variants with modifiable environmental factor in cardiovascular disease risk: a UK Biobank Mendelian randomization study. J. Am. Coll. Cardiol 85, a331 (2025).

Article 

Google Scholar
 

Iyer, H. S. et al. Impact of neighborhood socioeconomic status, income segregation, and greenness on blood biomarkers of inflammation. Env. Int. 162, 107164 (2022).

Article 
CAS 

Google Scholar
 

Wang, K. et al. Relationship of neighborhood greenness to heart disease in 249 405 US medicare beneficiaries. J. Am. Heart Assoc. 8, e010258 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, T. et al. Association of neighborhood greenness exposure with cardiovascular diseases and biomarkers. Int. J. Hyg. Env. Health 234, 113738 (2021).

Article 

Google Scholar
 

Chen, H. et al. Residential greenness and cardiovascular disease incidence, readmission, and mortality. Env. Health Perspect. 128, 87005 (2020).

Article 
CAS 

Google Scholar
 

Poulsen, A. H. et al. Concomitant exposure to air pollution, green space, and noise and risk of stroke: a cohort study from Denmark. Lancet Reg. Health Eur. 31, 100655 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mukhopadhyay, A. et al. Neighborhood-level socioeconomic status and prescription fill patterns among patients with heart failure. JAMA Netw. Open 6, e2347519 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kowaleski-Jones, L. et al. Walkable neighborhoods and obesity: evaluating effects with a propensity score approach. SSM Popul. Health 6, 9–15 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Son, W. H., Park, H. T., Jeon, B. H. & Ha, M. S. Moderate intensity walking exercises reduce the body mass index and vascular inflammatory factors in postmenopausal women with obesity: a randomized controlled trial. Sci. Rep. 13, 20172 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yamamoto, Y. et al. Association between subjective walking speed and metabolic diseases in individuals with obesity: a cross-sectional analysis. Sci. Rep. 14, 28228 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Drexel, H. et al. Downhill hiking improves low-grade inflammation, triglycerides, body weight and glucose tolerance. Sci. Rep. 11, 14503 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marshall, J. D., Brauer, M. & Frank, L. D. Healthy neighborhoods: walkability and air pollution. Environ. Health Perspect. 117, 1752–1759 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Howell, N. A., Tu, J. V., Moineddin, R., Chu, A. & Booth, G. L. Association between neighborhood walkability and predicted 10-year cardiovascular disease risk: the CANHEART (Cardiovascular Health in Ambulatory Care Research Team) cohort. J. Am. Heart Assoc. 8, e013146 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gorczyca, A. M. et al. Change in physical activity and sitting time after myocardial infarction and mortality among postmenopausal women in the Women’s Health Initiative-Observational study. J. Am. Heart Assoc. 6, e005354 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

James, P. et al. Interrelationships between walkability, air pollution, greenness, and body mass index. Epidemiology 28, 780–788 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Appleton, A. A., Holdsworth, E. A. & Kubzansky, L. D. A systematic review of the interplay between social determinants and environmental exposures for early-life outcomes. Curr. Environ. Health Rep. 3, 287–301 (2016).

Article 
PubMed 

Google Scholar
 

Motairek, I., Chen, Z., Makhlouf, M. H., Rajagopalan, S. & Al-Kindi, S. Historical neighbourhood redlining and contemporary environmental racism. Local. Environ. 28, 518–528 (2023).

Article 
PubMed 

Google Scholar
 

Al-Kindi, S. et al. Historical neighborhood redlining and cardiovascular risk in patients with chronic kidney disease. Circulation 148, 280–282 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mentias, A. et al. Historical redlining, socioeconomic distress, and risk of heart failure among medicare beneficiaries. Circulation 148, 210–219 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fields, N. D. et al. Historical redlining and heart failure outcomes following hospitalization in the Southeastern United States. J. Am. Heart Assoc. 13, e032019 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Calvillo-King, L. et al. Impact of social factors on risk of readmission or mortality in pneumonia and heart failure: systematic review. J. Gen. Intern. Med. 28, 269–282 (2013).

Article 
PubMed 

Google Scholar
 

Hood, E. Dwelling disparities: how poor housing leads to poor health. Env. Health Perspect. 113, A310–A317 (2005).

Article 

Google Scholar
 

Zuluaga, M. C. et al. Housing conditions and mortality in older patients hospitalized for heart failure. Am. Heart J. 161, 950–955 (2011).

Article 
PubMed 

Google Scholar
 

Abohashem, S. et al. Additive effect of high transportation noise exposure and socioeconomic deprivation on stress-associated neural activity, atherosclerotic inflammation, and cardiovascular disease events. J. Expo. Sci. Env. Epidemiol. 35, 62–69 (2025).

Article 

Google Scholar
 

Dewan, P. et al. Income inequality and outcomes in heart failure: a global between-country analysis. JACC Heart Fail. 7, 336–346 (2019).

Article 
PubMed 

Google Scholar
 

Tromp, J. et al. Post-discharge prognosis of patients admitted to hospital for heart failure by world region, and national level of income and income disparity (REPORT-HF): a cohort study. Lancet Glob. Health 8, e411–e422 (2020).

Article 
PubMed 

Google Scholar
 

Hahad, O. et al. Exposomic determinants of atherosclerosis: recent evidence. Curr. Atheroscler. Rep. 27, 28 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Osborne, M. T. et al. The combined effect of air and transportation noise pollution on atherosclerotic inflammation and risk of cardiovascular disease events. J. Nucl. Cardiol. 30, 665–679 (2023).

Article 
PubMed 

Google Scholar
 

Al-Kindi, S. Leveraging geospatial data science to uncover novel environmental predictors of cardiovascular disease. JACC Adv. 2, 100371 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ibrahim, R. et al. Big data, big insights: leveraging data analytics to unravel cardiovascular exposome complexities. Methodist. Debakey Cardiovasc. J. 20, 111–123 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Felker, G. M. & Teerlink, J. R. in Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine 12th edn Ch. 49 (eds Libby, P. et al.) 946–974 (Elsevier, 2022).

Zacharias, M., Al-Kindi, S. & Rajagopalan, S. Isolating noise from signals in the air. JACC Heart Fail. 11, 997–999 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Hahad, O. & Al-Kindi, S. Heavy metal, heavy heart: adverse cardiovascular effects of uranium exposure. JACC Adv. 3, 101404 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bozkurt, B. et al. HF STATS 2024: heart failure epidemiology and outcomes statistics an updated 2024 report from the Heart Failure Society of America. J. Card. Fail. 31, 66–116 (2025).

Article 
PubMed 

Google Scholar
 

Cho, Y. et al. Effects of artificial light at night on human health: a literature review of observational and experimental studies applied to exposure assessment. Chronobiol. Int. 32, 1294–1310 (2015).

Article 
PubMed 

Google Scholar
 

Dar, T. et al. Psychosocial stress and cardiovascular disease. Curr. Treat. Options Cardiovasc. Med. 21, 23 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar