Raup, D. M. Biological extinction in Earth history. Science 231, 1528–1533 (1986).

Article 
CAS 
PubMed 

Google Scholar
 

Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323, 728–732 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Harmon, L. J. & Harrison, S. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185, 584–593 (2015).

Article 
PubMed 

Google Scholar
 

Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).

Article 
PubMed 

Google Scholar
 

Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Gould, S. J., Gilinsky, N. L. & German, R. Z. Asymmetry of lineages and the direction of evolutionary time. Science 236, 1437–1441 (1987).

Article 
CAS 
PubMed 

Google Scholar
 

Žliobaitė, I., Fortelius, M. & Stenseth, N. C. Reconciling taxon senescence with the Red Queen’s hypothesis. Nature 552, 92–95 (2017).

Article 
PubMed 

Google Scholar
 

Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–16332 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Quental, T. B. & Marshall, C. R. How the Red Queen drives terrestrial mammals to extinction. Science 341, 290–292 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Etienne, R. S. & Haegeman, B. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. Am. Nat. 180, E75–E89 (2012).

Article 
PubMed 

Google Scholar
 

Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gavryushkina, A. et al. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst. Biol. 66, 57–73 (2017).

PubMed 

Google Scholar
 

Quintero, I., Lartillot, N. & Morlon, H. Imbalanced speciation pulses sustain the radiation of mammals. Science 384, 1007–1012 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Hauffe, T., Cantalapiedra, J. L. & Silvestro, D. Trait-mediated speciation and human-driven extinctions in proboscideans revealed by unsupervised Bayesian neural networks. Sci. Adv. 10, eadl2643 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Burin, G., Alencar, L. R., Chang, J., Alfaro, M. E. & Quental, T. B. How well can we estimate diversity dynamics for clades in diversity decline? Syst. Biol. 68, 47–62 (2019).

Article 
PubMed 

Google Scholar
 

Silvestro, D., Warnock, R. C., Gavryushkina, A. & Stadler, T. Closing the gap between palaeontological and neontological speciation and extinction rate estimates. Nat. Commun. 9, 5237 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Warnock, R. C., Heath, T. A. & Stadler, T. Assessing the impact of incomplete species sampling on estimates of speciation and extinction rates. Paleobiology 46, 137–157 (2020).

Article 

Google Scholar
 

Billaud, O., Moen, D., Parsons, T. L. & Morlon, H. Estimating diversity through time using molecular phylogenies: old and species-poor frog families are the remnants of a diverse past. Syst. Biol. 69, 363–383 (2020).

CAS 
PubMed 

Google Scholar
 

Rabosky, D. L. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol. Lett. 12, 735–743 (2009).

Article 
PubMed 

Google Scholar
 

Sepkoski, J. J. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19, 43–51 (1993).

Article 
PubMed 

Google Scholar
 

Alroy, J. Dynamics of origination and extinction in the marine fossil record. Proc. Natl Acad. Sci. USA 105, 11536–11542 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Foote, M. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 33, 517–529 (2007).

Article 

Google Scholar
 

Morlon, H., Potts, M. D. & Plotkin, J. B. Inferring the dynamics of diversification: a coalescent approach. PLoS Biol. 8, e1000493 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hohmann, N. & Jarochowska, E. Enforced symmetry: the necessity of symmetric waxing and waning. PeerJ 7, e8011 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nee, S. Birth–death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).

Article 

Google Scholar
 

Simpson, G. G.Tempo and Mode in Evolution (Columbia Univ. Press, 1953).

Schluter, D.The Ecology of Adaptive Radiations (Oxford Univ. Press, 2000).

Calderón del Cid, C. et al. The clade replacement theory: a framework to study age-dependent extinction. J. Evol. Biol. 37, 290–301 (2024).

Article 
PubMed 

Google Scholar
 

Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

Article 
CAS 
PubMed 

Google Scholar
 

Bambach, R. K., Knoll, A. H. & Wang, S. C. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30, 522–542 (2004).

Article 

Google Scholar
 

Stadler, T. Sampling-through-time in birth–death trees. J. Theor. Biol. 267, 396–404 (2010).

Article 
PubMed 

Google Scholar
 

Truman, K., Vaughan, T. G., Gavryushkin, A. & Gavryushkina, A. S. The fossilised birth–death model is identifiable. Syst. Biol. 74, 112–123 (2025).

Jablonski, D. Heritability at the species level: analysis of geographic ranges of cretaceous mollusks. Science 238, 360–363 (1987).

Article 
CAS 
PubMed 

Google Scholar
 

Tanner, M. A. & Wong, W. H. The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82, 528–540 (1987).

Article 

Google Scholar
 

Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Maliet, O. & Morlon, H. Fast and accurate estimation of species-specific diversification rates using data augmentation. Syst. Biol. 71, 353–366 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Holland, S. M. The non-uniformity of fossil preservation. Phil. Trans. R. Soc. B 371, 20150130 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pett, W. & Heath, T. A. in Phylogenetics in the Genomic Era (eds Scornavacca, C. et al.) 5.1:1–5.1:18 (2020); https://hal.science/hal-02536361

Andréoletti, J. et al. The occurrence birth–death process for combined-evidence analysis in macroevolution and epidemiology. Syst. Biol. 71, 1440–1452 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cooper, R. B., Flannery-Sutherland, J. T. & Silvestro, D. DeepDive: estimating global biodiversity patterns through time using deep learning. Nat. Commun. 15, 4199 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Foote, M. Diversity-dependent diversification in the history of marine animals. Am. Nat. 201, 680–693 (2023).

Article 
PubMed 

Google Scholar
 

Barnes, B. D., Sclafani, J. A. & Zaffos, A. Dead clades walking are a pervasive macroevolutionary pattern. Proc. Natl Acad. Sci. USA 118, e2019208118 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gould, S. J., Raup, D. M., Sepkoski, J. J., Schopf, T. J. & Simberloff, D. S. The shape of evolution: a comparison of real and random clades. Paleobiology 3, 23–40 (1977).

Article 

Google Scholar
 

Maliet, O., Hartig, F. & Morlon, H. A model with many small shifts for estimating species-specific diversification rates. Nat. Ecol. Evol. 3, 1086–1092 (2019).

Article 
PubMed 

Google Scholar
 

Van Valen, L. The Red Queen. Am. Nat. 111, 809–810 (1977).

Article 

Google Scholar
 

Eldredge, N. & Gould, S. J. in Models in Paleobiology (ed. Schopf, T. J. M.) 82–115 (Freeman, Cooper & Co., 1972).

Hunt, G. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc. Natl Acad. Sci. USA 104, 18404–18408 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sanisidro, O., Mihlbachler, M. C. & Cantalapiedra, J. L. A macroevolutionary pathway to megaherbivory. Science 380, 616–618 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).


Google Scholar
 

Spiridonov, A. & Lovejoy, S. Life rather than climate influences diversity at scales greater than 40 million years. Nature 607, 307–312 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Pearson, P. N. Investigating age dependency of species extinction rates using dynamic survivorship analysis. Hist. Biol. 10, 119–136 (1995).

Article 

Google Scholar
 

Nietzsche, F. Thus Spoke Zarathustra: A Book for All and None (Random House, 1995).

Fischhoff, B. Hindsight is not equal to foresight: the effect of outcome knowledge on judgment under uncertainty. J. Exp. Psychol. 1, 288–299 (1975).


Google Scholar
 

Kidwell, S. M. & Holland, S. M. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33, 561–588 (2002).

Article 

Google Scholar
 

Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: a new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).

Article 

Google Scholar
 

Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

Article 
PubMed 

Google Scholar
 

Mitchell, J. S., Etienne, R. S. & Rabosky, D. L. Inferring diversification rate variation from phylogenies with fossils. Syst. Biol. 68, 1–18 (2019).

PubMed 

Google Scholar
 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

Article 
CAS 

Google Scholar
 

Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

Article 

Google Scholar
 

Huelsenbeck, J. P., Rannala, B. & Masly, J. P. Accommodating phylogenetic uncertainty in evolutionary studies. Science 288, 2349–2350 (2000).

Article 
CAS 
PubMed 

Google Scholar
 

Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J. & Heath, T. A. The fossilized birth–death model for the analysis of stratigraphic range data under different speciation modes. J. Theor. Biol. 447, 41–55 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stolz, U., Gavryushkina, A., Vaughan, T. G., Stadler, T. & Allen, B. J. Enhancing evolutionary timelines: the impact of stratigraphic range information on phylogenetic inference. Preprint at bioRxiv https://doi.org/10.1101/2025.04.17.649084 (2025).

Varela, S., González Hernández, J. & Fabris Sgarbi, L. paleobioDB: download and process data from the paleobiology database. R package v.0.7.0. CRAN https://CRAN.R-project.org/package=paleobioDB (2020).

Zaffos, A. A. velociraptr: Fossil Analysis. R package v.1.1.0. CRAN https://CRAN.R-project.org/package=velociraptr (2019).

R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

Quintero, I., Landis, M. J., Jetz, W. & Morlon, H. The build-up of the present-day tropical diversity of tetrapods. Proc. Natl Acad. Sci. USA 120, e2220672120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Stan Reference Manual: Version 2.36.0 (Stan Development Team, 2024).

Gabry, J., Češnovar, R., Johnson, A. & Bronder, S. CmdStanR: R interface to ’CmdStan’. R package v.0.9.0. Stan https://mc-stan.org/cmdstanr/ (2025).

Rabosky, D. L. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44, 481–502 (2013).

Article 

Google Scholar
 

Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. B 279, 1300–1309 (2012).

Article 
PubMed 

Google Scholar
 

Quintero, I. Supplementary dataset for “The rise, decline and fall of clades”. Zenodo https://doi.org/10.5281/zenodo.15535408 (2025).