Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1–39.e14 (2015).

PubMed 

Google Scholar
 

Thorstensen, A., Dalen, H., Amundsen, B. H., Aase, S. A. & Stoylen, A. Reproducibility in echocardiographic assessment of the left ventricular global and regional function, the HUNT study. Eur. J. Echocardiogr. 11, 149–156 (2010).

PubMed 

Google Scholar
 

Nagueh, S. F. et al. Interobserver variability in applying American Society of Echocardiography/European Association of Cardiovascular Imaging 2016 guidelines for estimation of left ventricular filling pressure. Circ. Cardiovasc. Imaging 12, e008122 (2019).

PubMed 

Google Scholar
 

Won, D. et al. Sound the alarm: the sonographer shortage is echoing across healthcare. J. Ultrasound Med. 43, 1289–1301 (2024).

PubMed 

Google Scholar
 

Hanneman, K. et al. Value creation through artificial intelligence and cardiovascular imaging: a scientific statement from the American Heart Association. Circulation 149, e296–e311 (2024).

PubMed 

Google Scholar
 

Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

CAS 
PubMed 

Google Scholar
 

Carneiro, G., Nascimento, J. C. & Freitas, A. The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans. Image Process. 21, 968–982 (2012).

PubMed 

Google Scholar
 

Abdi, A. H. et al. Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans. Med. Imaging 36, 1221–1230 (2017).

PubMed 

Google Scholar
 

Madani, A., Arnaout, R., Mofrad, M. & Arnaout, R. Fast and accurate view classification of echocardiograms using deep learning. npj Digit. Med. 1, 6 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Østvik, A., Smistad, E., Aase, S. A., Haugen, B. O. & Lovstakken, L. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks. Ultrasound Med. Biol. 45, 374–384 (2019).

PubMed 

Google Scholar
 

Zhang, J. et al. Fully automated echocardiogram interpretation in clinical practice. Circulation 138, 1623–1635 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Siontis, K. C., Noseworthy, P. A., Attia, Z. I. & Friedman, P. A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18, 465–478 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Tromp, J. et al. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit. Health 4, e46–e54 (2022).

CAS 
PubMed 

Google Scholar
 

Hirata, Y., Nomura, Y., Saijo, Y., Sata, M. & Kusunose, K. Reducing echocardiographic examination time through routine use of fully automated software: a comparative study of measurement and report creation time. J. Echocardiogr. 22, 162–170 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Olaisen, S. et al. Automatic measurements of left ventricular volumes and ejection fraction by artificial intelligence: clinical validation in real time and large databases. Eur. Heart J. Cardiovasc. Imaging 25, 383–395 (2024).

PubMed 

Google Scholar
 

Krittanawong, C. et al. Deep learning for echocardiography: introduction for clinicians and future vision: state-of-the-art review. Life 13, 1029 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Ostvik, A. et al. Myocardial function imaging in echocardiography using deep learning. IEEE Trans. Med. Imaging 40, 1340–1351 (2021).

PubMed 

Google Scholar
 

Tromp, J. et al. A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram. Nat. Commun. 13, 6776 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Myhre, P. L. et al. External validation of a deep learning algorithm for automated echocardiographic strain measurements. Eur. Heart J. Digit. Health 5, 60–68 (2024).

PubMed 

Google Scholar
 

Cai, Q. et al. Automated echocardiographic diastolic function grading: a hybrid multi-task deep learning and machine learning approach. Int. J. Cardiol. 416, 132504 (2024).

PubMed 

Google Scholar
 

He, B. et al. Blinded, randomized trial of sonographer versus AI cardiac function assessment. Nature 616, 520–524 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Balagopalan, A. et al. Machine learning for healthcare that matters: reorienting from technical novelty to equitable impact. PLoS Digit. Health 3, e0000474 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Ouyang, D. et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 580, 252–256 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kusunose, K. et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images. JACC Cardiovasc. Imaging 13, 374–381 (2020).

PubMed 

Google Scholar
 

Asch, F. M. et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert. Circ. Cardiovasc. Imaging 12, e009303 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Asch, F. M. et al. Deep learning-based automated echocardiographic quantification of left ventricular ejection fraction: a point-of-care solution. Circ. Cardiovasc. Imaging 14, e012293 (2021).

PubMed 

Google Scholar
 

Myhre, P. L. et al. Concordance of left ventricular volumes and function measurements between two human readers, a fully automated AI algorithm, and the 3D heart model. Front. Cardiovasc. Med. 11, 1400333 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Lang, R. M. et al. Use of machine learning to improve echocardiographic image interpretation workflow: a disruptive paradigm change? J. Am. Soc. Echocardiogr. 34, 443–445 (2021).

PubMed 

Google Scholar
 

Leclerc, S. et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38, 2198–2210 (2019).

PubMed 

Google Scholar
 

Smistad, E. et al. Real-time automatic ejection fraction and foreshortening detection using deep learning. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 2595–2604 (2020).

PubMed 

Google Scholar
 

Ghorbani, A. et al. Deep learning interpretation of echocardiograms. npj Digit. Med. 3, 10 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Alvén, J., Hagberg, E., Hagerman, D., Petersen, R. & Hjelmgren, O. A deep multi-stream model for robust prediction of left ventricular ejection fraction in 2D echocardiography. Sci. Rep. 14, 2104 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Salte, I. M. et al. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography. JACC Cardiovasc. Imaging 14, 1918–1928 (2021).

PubMed 

Google Scholar
 

Salte, I. M. et al. Deep learning for improved precision and reproducibility of left ventricular strain in echocardiography: a test–retest study. J. Am. Soc. Echocardiogr. 36, 788–799 (2023).

PubMed 

Google Scholar
 

Nyberg, J. et al. Deep learning improves test-retest reproducibility of regional strain in echocardiography. Eur. Heart J. Imaging Methods Pract. 2, qyae092 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Stowell, C. C. et al. 2-dimensional echocardiographic global longitudinal strain with artificial intelligence using open data from a UK-wide collaborative. JACC Cardiovasc. Imaging 17, 865–876 (2024).

PubMed 

Google Scholar
 

Kwan, A. C. et al. Deep learning-derived myocardial strain. JACC Cardiovasc. Imaging 17, 715–725 (2024).

PubMed 

Google Scholar
 

Schneider, M. et al. A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF. Int. J. Cardiovasc. Imaging 37, 577–586 (2021).

PubMed 

Google Scholar
 

Huang, W. et al. Point-of-care AI-enhanced novice echocardiography for screening heart failure (PANES-HF). Sci. Rep. 14, 13503 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Narang, A. et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 6, 624–632 (2021).

PubMed 

Google Scholar
 

Berg, E. A. R. et al. Fully automatic estimation of global left ventricular systolic function using deep learning in transoesophageal echocardiography. Eur. Heart J. Imaging Methods Pract. 1, qyad007 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Yu, J. et al. Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography. J. Clin. Monit. Comput. https://doi.org/10.1007/s10877-023-01118-x (2024).

PubMed 

Google Scholar
 

Lau, E. S. et al. Deep learning-enabled assessment of left heart structure and function predicts cardiovascular outcomes. J. Am. Coll. Cardiol. 82, 1936–1948 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Howard, J. P. et al. Automated left ventricular dimension assessment using artificial intelligence developed and validated by a UK-wide collaborative. Circ.: Cardiovasc. Imaging 14, e011951 (2021).

PubMed 

Google Scholar
 

Duffy, G. et al. High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA Cardiol. 7, 386–395 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Gilbert, A. et al. User-intended doppler measurement type prediction combining CNNs with smart post-processing. IEEE J. Biomed. Health Inform. 25, 2113–2124 (2021).

PubMed 

Google Scholar
 

Jeon, J. et al. A unified approach for comprehensive analysis of various spectral and tissue doppler echocardiography. in 2024 IEEE International Symposium on Biomedical Imaging (ISBI) https://doi.org/10.1109/ISBI56570.2024.10635387 (IEEE, 2024).

Jevsikov, J. et al. Automated mitral inflow Doppler peak velocity measurement using deep learning. Comput. Biol. Med. 171, 108192 (2024).

PubMed 

Google Scholar
 

Chen, X. et al. Artificial intelligence-assisted left ventricular diastolic function assessment and grading: multiview versus single view. J. Am. Soc. Echocardiogr. 36, 1064–1078 (2023).

PubMed 

Google Scholar
 

Park, J. et al. Artificial intelligence-enhanced automation of left ventricular diastolic assessment: a pilot study for feasibility, diagnostic validation, and outcome prediction. Cardiovasc. Diagn. Ther. 14, 352–366 (2024).

PubMed 
PubMed Central 

Google Scholar
 

O’Neill, T., Kang, P., Hagendorff, A. & Tayal, B. The clinical applications of left atrial strain: a comprehensive review. Medicina 60, 693 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Ferkh, A., Clark, A. & Thomas, L. Left atrial phasic function: physiology, clinical assessment and prognostic value. Heart 109, 1661–1669 (2023).

PubMed 

Google Scholar
 

Yaku, H., Komtebedde, J., Silvestry, F. E. & Shah, S. J. Deep learning-based automated measurements of echocardiographic estimators of invasive pulmonary capillary wedge pressure perform equally to core lab measurements: results from reduce LAP-HF II. J. Am. Coll. Cardiol. https://doi.org/10.1016/S0735-1097%2824%2902306-4 (2024).

Konstam, M. A. et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation 137, e578–e622 (2018).

PubMed 

Google Scholar
 

Tokodi, M. et al. Deep learning-based prediction of right ventricular ejection fraction using 2D echocardiograms. JACC Cardiovasc. Imaging 16, 1005–1018 (2023).

PubMed 

Google Scholar
 

Murayama, M. et al. Deep learning to assess right ventricular ejection fraction from two-dimensional echocardiograms in precapillary pulmonary hypertension. Echocardiography 41, e15812 (2024).

PubMed 

Google Scholar
 

Chernyshov, A. et al. Automated segmentation and quantification of the right ventricle in 2-D echocardiography. Ultrasound Med. Biol. 50, 540–548 (2024).

PubMed 

Google Scholar
 

Arbelo, E. et al. 2023 ESC guidelines for the management of cardiomyopathies. Eur. Heart J. 44, 3503–3626 (2023).

CAS 
PubMed 

Google Scholar
 

Alwan, L. et al. Current and evolving multimodality cardiac imaging in managing transthyretin amyloid cardiomyopathy. JACC Cardiovasc. Imaging 17, 195–211 (2024).

PubMed 

Google Scholar
 

Yu, X. et al. Using deep learning method to identify left ventricular hypertrophy on echocardiography. Int. J. Cardiovasc. Imaging 38, 759–769 (2022).

PubMed 

Google Scholar
 

Kamel, M. A. et al. How artificial intelligence can enhance the diagnosis of cardiac amyloidosis: a review of recent advances and challenges. J. Cardiovasc. Dev. Dis. 11, 118 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Goto, S. et al. Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms. Nat. Commun. 12, 2726 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Oikonomou, E. K. et al. Artificial intelligence-enabled electrocardiography and echocardiography to track preclinical progression of transthyretin amyloid cardiomyopathy. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehaf450 (2025).

Narula, S., Shameer, K., Salem Omar, A. M., Dudley, J. T. & Sengupta, P. P. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J. Am. Coll. Cardiol. 68, 2287–2295 (2016).

PubMed 

Google Scholar
 

Krishna, H. et al. Fully automated artificial intelligence assessment of aortic stenosis by echocardiography. J. Am. Soc. Echocardiogr. 36, 769–777 (2023).

PubMed 

Google Scholar
 

Holste, G., Oikonomou, E. K., Mortazavi, B. J., Wang, Z. & Khera, R. Efficient deep learning-based automated diagnosis from echocardiography with contrastive self-supervised learning. Commun. Med. 4, 1–10 (2024).


Google Scholar
 

Holste, G. et al. Severe aortic stenosis detection by deep learning applied to echocardiography. Eur. Heart J. 44, 4592–4604 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Wessler, B. S. et al. Automated detection of aortic stenosis using machine learning. J. Am. Soc. Echocardiogr. 36, 411–420 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Long, A. et al. Deep learning for echo analysis, tracking, and evaluation of mitral regurgitation (DELINEATE-MR). Circulation https://doi.org/10.1161/CIRCULATIONAHA.124.068996 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Vrudhula, A. et al. High-throughput deep learning detection of mitral regurgitation. Circulation 150, 923–933 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Wifstad, S. V. et al. EasyPISA: automatic integrated PISA measurements of mitral regurgitation from 2-D color-doppler using deep learning. Ultrasound Med. Biol. https://doi.org/10.1016/j.ultrasmedbio.2024.06.008 (2024).

PubMed 

Google Scholar
 

Sadeghpour, A. et al. An automated machine learning-based quantitative multiparametric approach for mitral regurgitation severity grading. JACC Cardiovasc. Imaging https://doi.org/10.1016/j.jcmg.2024.06.011 (2024).

Bernard, J. et al. Integrating echocardiography parameters with explainable artificial intelligence for data-driven clustering of primary mitral regurgitation phenotypes. JACC Cardiovasc. Imaging 16, 1253–1267 (2023).

PubMed 

Google Scholar
 

Nedadur, R., Wang, B. & Tsang, W. Artificial intelligence for the echocardiographic assessment of valvular heart disease. Heart 108, 1592–1599 (2022).

PubMed 

Google Scholar
 

Bozkurt, B. et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. https://doi.org/10.1016/j.cardfail.2021.01.022 (2021).

Akerman, A. P. et al. Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence. JACC Adv. https://doi.org/10.1016/j.jacadv.2023.100452 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Cassianni, C. et al. Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence is associated with cardiac mortality and heart failure hospitalization. J. Am. Soc. Echocardiogr. 37, 914–916 (2024).

PubMed 

Google Scholar
 

Lin, X. et al. Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction. Front. Cardiovasc. Med. 9, 903660 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Slivnick, J. A. et al. Echocardiographic detection of regional wall motion abnormalities using artificial intelligence compared to human readers. J. Am. Soc. Echocardiogr. 37, 655–663 (2024).

PubMed 
PubMed Central 

Google Scholar
 

European Society of Cardiology. PROTEUS trial suggests AI for heart scans may benefit decision making for less-experienced clinicians (ESC, 2024); https://www.escardio.org/The-ESC/Press-Office/Press-releases/PROTEUS-Trial-suggests-AI-for-heart-scans-may-benefit-decision-making-for-less-experienced-clinicians.

Laumer, F. et al. Assessment of artificial intelligence in echocardiography diagnostics in differentiating Takotsubo syndrome from myocardial infarction. JAMA Cardiol. 7, 494–503 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Liao, Z. et al. Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning. Pulm. Circ. 13, e12272 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hirata, Y., Tsuji, T., Kotoku, J., Sata, M. & Kusunose, K. Echocardiographic artificial intelligence for pulmonary hypertension classification. Heart 110, 586–593 (2024).

PubMed 

Google Scholar
 

Mor-Avi, V. et al. Real-time artificial intelligence–based guidance of echocardiographic imaging by novices: image quality and suitability for diagnostic interpretation and quantitative analysis. Circ. Cardiovasc. Imaging 16, e015569 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Pasdeloup, D. et al. Real-time echocardiography guidance for optimized apical standard views. Ultrasound Med. Biol. 49, 333–346 (2023).

PubMed 

Google Scholar
 

Sabo, S. et al. Real-time guidance by deep learning of experienced operators to improve the standardization of echocardiographic acquisitions. Eur. Heart J. Imaging Methods Pract. 1, qyad040 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Sabo, S. et al. Real-time guiding by deep learning during echocardiography to reduce left ventricular foreshortening and measurement variability. Eur. Heart J. Imaging Methods Pract. 1, qyad012 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Luong, C. et al. Automated estimation of echocardiogram image quality in hospitalized patients. Int. J. Cardiovasc. Imaging 37, 229–239 (2021).

PubMed 

Google Scholar
 

Huang, K.-C. et al. Artificial intelligence aids cardiac image quality assessment for improving precision in strain measurements. JACC Cardiovasc. Imaging 14, 335–345 (2021).

PubMed 

Google Scholar
 

Van De Vyver, G. et al. Regional image quality scoring for 2-D echocardiography using deep learning. Ultrasound Med. Biol. 51, 638–649 (2025).

PubMed 

Google Scholar
 

Liu, Z. et al. Automated deep neural network-based identification, localization, and tracking of cardiac structures for ultrasound-guided interventional surgery. J. Thorac. Dis. 15, 2129–2140 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Baum, E. et al. Acquisition of cardiac point-of-care ultrasound images with deep learning: a randomized trial for educational outcomes with novices. CHEST Pulm. 1, 100023 (2023).


Google Scholar
 

Li, K., Li, A., Xu, Y., Xiong, H. & Meng, M. Q.-H. RL-TEE: autonomous probe guidance for transesophageal echocardiography based on attention-augmented deep reinforcement learning. IEEE Trans. Autom. Sci. Eng. 21, 1526–1538 (2024).


Google Scholar
 

Steffner, K. R. et al. Deep learning for transesophageal echocardiography view classification. Sci. Rep. 14, 11 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kagiyama, N. Artificial intelligence-based automated echocardiographic measurements and the workflow of sonographers: randomized crossover trial (AI-Echo RCT) (American Heart Association, 2024).

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05919342 (2023).

Motazedian, P. et al. Diagnostic accuracy of point-of-care ultrasound with artificial intelligence-assisted assessment of left ventricular ejection fraction. npj Digit. Med. 6, 201 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Kagiyama, N. et al. Multicenter validation study for automated left ventricular ejection fraction assessment using a handheld ultrasound with artificial intelligence. Sci. Rep. 14, 15359 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Oikonomou, E. K. et al. Artificial intelligence-guided detection of under-recognised cardiomyopathies on point-of-care cardiac ultrasonography: a multicentre study. Lancet Digit. Health 7, e113–e123 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Campell, R. OPERA – AI — reporting of handheld echocardiography in suspected heart failure (European Society of Cardiology Congress, 2023).

Tromp, J. et al. Nurse-led home-based detection of cardiac dysfunction by ultrasound: results of the CUMIN pilot study. Eur. Heart J. Digit. Health 5, 163–169 (2024).

PubMed 

Google Scholar
 

Peck, D. et al. The use of artificial intelligence guidance for rheumatic heart disease screening by novices. J. Am. Soc. Echocardiogr. 36, 724–732 (2023).

PubMed 

Google Scholar
 

Lyon, A. R. et al. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European hematology association (EHA), the European society for therapeutic radiology and oncology (ESTRO) and the international cardio-oncology society (IC-OS). Eur. Heart J. Cardiovasc. Imaging 23, e333–e465 (2022).

PubMed 

Google Scholar
 

Papadopoulou, S.-L. et al. Artificial intelligence-assisted evaluation of cardiac function by oncology staff in chemotherapy patients. Eur. Heart J. Digit. Health 5, 278–287 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Oikonomou, E. K. et al. A multimodal video-based AI biomarker for aortic stenosis development and progression. JAMA Cardiol. 9, 534–544 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Oo, M. M. et al. Artificial intelligence-assisted automated heart failure detection and classification from electronic health records. ESC Heart Fail. 11, 2769–2777 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Pandey, A. et al. Deep-learning models for the echocardiographic assessment of diastolic dysfunction. JACC Cardiovasc. Imaging 14, 1887–1900 (2021).

PubMed 

Google Scholar
 

Sengupta, P. P. et al. A machine-learning framework to identify distinct phenotypes of aortic stenosis severity. JACC Cardiovasc. Imaging 14, 1707–1720 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Sánchez-Puente, A. et al. Machine learning to optimize the echocardiographic follow-up of aortic stenosis. JACC Cardiovasc. Imaging 16, 733–744 (2023).

PubMed 

Google Scholar
 

Sengupta, P. P., Dey, D., Davies, R. H., Duchateau, N. & Yanamala, N. Challenges for augmenting intelligence in cardiac imaging. Lancet Digit. Health 6, e739–e748 (2024).

CAS 
PubMed 

Google Scholar
 

Díaz-Rodríguez, N. et al. Connecting the dots in trustworthy artificial intelligence: from AI principles, ethics, and key requirements to responsible AI systems and regulation. Inf. Fusion 99, 101896 (2023).


Google Scholar
 

Lüscher, T. F., Wenzl, F. A., D’Ascenzo, F., Friedman, P. A. & Antoniades, C. Artificial intelligence in cardiovascular medicine: clinical applications. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehae465 (2024).

Khera, R. et al. Transforming cardiovascular care with artificial intelligence: from discovery to practice: JACC state-of-the-art review. J. Am. Coll. Cardiol. 84, 97–114 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Tseng, A. S., Lopez-Jimenez, F. & Pellikka, P. A. Future guidelines for artificial intelligence in echocardiography. J. Am. Soc. Echocardiogr. 35, 878–882 (2022).

PubMed 

Google Scholar
 

Vrudhula, A., Kwan, A. C., Ouyang, D. & Cheng, S. Machine learning and bias in medical imaging: opportunities and challenges. Circ. Cardiovasc. Imaging 17, e015495 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Mihan, A., Pandey, A. & Spall, H. G. V. Mitigating the risk of artificial intelligence bias in cardiovascular care. Lancet Digit. Health 6, e749–e754 (2024).

CAS 
PubMed 

Google Scholar
 

Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Duffy, G. et al. Confounders mediate AI prediction of demographics in medical imaging. npj Digit. Med. 5, 188 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Brown, A. et al. Detecting shortcut learning for fair medical AI using shortcut testing. Nat. Commun. 14, 4314 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Banerjee, I. et al. “Shortcuts” causing bias in radiology artificial intelligence: causes, evaluation, and mitigation. J. Am. Coll. Radiol. 20, 842–851 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Yang, Y., Zhang, H., Gichoya, J. W., Katabi, D. & Ghassemi, M. The limits of fair medical imaging AI in real-world generalization. Nat. Med. https://doi.org/10.1038/s41591-024-03113-4 (2024).

Dohare, S. et al. Loss of plasticity in deep continual learning. Nature 632, 768–774 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gama, F. et al. Implementation frameworks for artificial intelligence translation into health care practice: scoping review. J. Med. Internet Res. 24, e32215 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

CAS 
PubMed 

Google Scholar
 

European Parliament. Directorate general for parliamentary research services. artificial intelligence in healthcare: applications, risks, and ethical and societal impacts (2022); https://data.europa.eu/doi/10.2861/568473.

Khera, R., Simon, M. A. & Ross, J. S. Automation bias and assistive AI: risk of harm from AI-driven clinical decision support. JAMA 330, 2255–2257 (2023).

PubMed 

Google Scholar
 

Wang, F. & Beecy, A. Implementing AI models in clinical workflows: a roadmap. BMJ Evid. Based Med. https://doi.org/10.1136/bmjebm-2023-112727 (2024).

Gill, S. K. et al. Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare. Eur. Heart J. 44, 713–725 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Christensen, M., Vukadinovic, M., Yuan, N. & Ouyang, D. Vision–language foundation model for echocardiogram interpretation. Nat. Med. 30, 1481–1488 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barros-Gomes, S. et al. Characteristics and consequences of work-related musculoskeletal pain among cardiac sonographers compared with peer employees: a multisite cross-sectional study. J. Am. Soc. Echocardiogr. 32, 1138–1146 (2019).

PubMed 

Google Scholar
 

Li, K. et al. Autonomous navigation of an ultrasound probe towards standard scan planes with deep reinforcement learning. in 2021 IEEE International Conference on Robotics and Automation (ICRA) https://doi.org/10.1109/ICRA48506.2021.9561295 (IEEE, 2021).

Soemantoro, R., Kardos, A., Tang, G. & Zhao, Y. An AI-powered navigation framework to achieve an automated acquisition of cardiac ultrasound images. Sci. Rep. 13, 15008 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Amezcua, K.-L. et al. Design and testing of ultrasound probe adapters for a robotic imaging platform. Sci. Rep. 14, 5102 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Villalobos Lizardi, J. C. et al. A guide for assessment of myocardial stiffness in health and disease. Nat. Cardiovasc. Res. 1, 8–22 (2022).

PubMed 

Google Scholar
 

Caenen, A. et al. Ultrasound shear wave elastography in cardiology. JACC Cardiovasc. Imaging 17, 314–329 (2024).

PubMed 

Google Scholar
 

Hathaway, Q. A. et al. Ultrasonic texture features for assessing cardiac remodeling and dysfunction. J. Am. Coll. Cardiol. 80, 2187–2201 (2022).

PubMed 

Google Scholar
 

Sengupta, P. P. & Chandrashekhar, Y. Advancing myocardial tissue analysis using echocardiography. JACC Cardiovasc. Imaging 17, 228–231 (2024).

PubMed 

Google Scholar
 

Jamthikar, A. D. et al. Cardiac ultrasonic tissue characterization in myocardial infarction based on deep transfer learning and radiomics features. Preprint at medRxiv https://doi.org/10.1101/2024.03.29.24305067 (2024).

Amado-Rey, A., GonçalvesSeabra, A. & Stieglitz, T. Towards ultrasound wearable technology for cardiovascular monitoring: from device development to clinical validation. IEEE Rev. Biomed. Eng. https://doi.org/10.1109/RBME.2024.3410399 (2024).

Moisello, E. et al. PMUT and CMUT devices for biomedical applications: a review. IEEE Access 12, 18640–18657 (2024).


Google Scholar
 

Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Democratizing echocardiography with AI. Us2.ai https://us2.ai/publications/ai-echo-white-paper/ (2023).

Turing, A. M. On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc. s2-42, 230–265 (1937).


Google Scholar
 

Hunter, D. J. & Holmes, C. Where medical statistics meets artificial intelligence. N. Engl. J. Med. 389, 1211–1219 (2023).

PubMed 

Google Scholar
 

Haug, C. J. & Drazen, J. M. Artificial intelligence and machine learning in clinical medicine. N. Engl. J. Med. 388, 1201–1208 (2023).

CAS 
PubMed 

Google Scholar
 

Shehab, M. et al. Machine learning in medical applications: a review of state-of-the-art methods. Comput. Biol. Med. 145, 105458 (2022).

PubMed 

Google Scholar
 

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

CAS 
PubMed 

Google Scholar
 

Sidey-Gibbons, J. A. M. & Sidey-Gibbons, C. J. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19, 64 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Reading Turchioe, M. et al. Systematic review of current natural language processing methods and applications in cardiology. Heart 108, 909–916 (2022).

PubMed 

Google Scholar
 

Will ChatGPT transform healthcare? Nat. Med. 29, 505–506 (2023).

Boonstra, M. J., Weissenbacher, D., Moore, J. H., Gonzalez-Hernandez, G. & Asselbergs, F. W. Artificial intelligence: revolutionizing cardiology with large language models. Eur. Heart J. 45, 332–345 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Amadou, A. A. et al. EchoApex: a general-purpose vision foundation model for echocardiography. Preprint at https://doi.org/10.48550/arXiv.2410.11092 (2024).

Zhang, Z., Wu, Q., Ding, S., Wang, X. & Ye, J. Echo-vision-FM: a pre-training and fine-tuning framework for echocardiogram videos vision foundation model. Preprint at medRxiv https://doi.org/10.1101/2024.10.09.24315195 (2024).

Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med. 13, 1 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J. & Denniston, A. K. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sengupta, P. P. et al. Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist. JACC Cardiovasc. Imaging 13, 2017–2035 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Lafitte, S. et al. Integrating artificial intelligence into an echocardiography department: feasibility and comparative study of automated versus human measurements in a high-volume clinical setting. Arch. Cardiovasc. Dis. https://doi.org/10.1016/j.acvd.2025.04.051 (2025).