Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1–39.e14 (2015).
Thorstensen, A., Dalen, H., Amundsen, B. H., Aase, S. A. & Stoylen, A. Reproducibility in echocardiographic assessment of the left ventricular global and regional function, the HUNT study. Eur. J. Echocardiogr. 11, 149–156 (2010).
Nagueh, S. F. et al. Interobserver variability in applying American Society of Echocardiography/European Association of Cardiovascular Imaging 2016 guidelines for estimation of left ventricular filling pressure. Circ. Cardiovasc. Imaging 12, e008122 (2019).
Won, D. et al. Sound the alarm: the sonographer shortage is echoing across healthcare. J. Ultrasound Med. 43, 1289–1301 (2024).
Hanneman, K. et al. Value creation through artificial intelligence and cardiovascular imaging: a scientific statement from the American Heart Association. Circulation 149, e296–e311 (2024).
Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).
Carneiro, G., Nascimento, J. C. & Freitas, A. The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans. Image Process. 21, 968–982 (2012).
Abdi, A. H. et al. Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view. IEEE Trans. Med. Imaging 36, 1221–1230 (2017).
Madani, A., Arnaout, R., Mofrad, M. & Arnaout, R. Fast and accurate view classification of echocardiograms using deep learning. npj Digit. Med. 1, 6 (2018).
Østvik, A., Smistad, E., Aase, S. A., Haugen, B. O. & Lovstakken, L. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks. Ultrasound Med. Biol. 45, 374–384 (2019).
Zhang, J. et al. Fully automated echocardiogram interpretation in clinical practice. Circulation 138, 1623–1635 (2018).
Siontis, K. C., Noseworthy, P. A., Attia, Z. I. & Friedman, P. A. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat. Rev. Cardiol. 18, 465–478 (2021).
Tromp, J. et al. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit. Health 4, e46–e54 (2022).
Hirata, Y., Nomura, Y., Saijo, Y., Sata, M. & Kusunose, K. Reducing echocardiographic examination time through routine use of fully automated software: a comparative study of measurement and report creation time. J. Echocardiogr. 22, 162–170 (2024).
Olaisen, S. et al. Automatic measurements of left ventricular volumes and ejection fraction by artificial intelligence: clinical validation in real time and large databases. Eur. Heart J. Cardiovasc. Imaging 25, 383–395 (2024).
Krittanawong, C. et al. Deep learning for echocardiography: introduction for clinicians and future vision: state-of-the-art review. Life 13, 1029 (2023).
Ostvik, A. et al. Myocardial function imaging in echocardiography using deep learning. IEEE Trans. Med. Imaging 40, 1340–1351 (2021).
Tromp, J. et al. A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram. Nat. Commun. 13, 6776 (2022).
Myhre, P. L. et al. External validation of a deep learning algorithm for automated echocardiographic strain measurements. Eur. Heart J. Digit. Health 5, 60–68 (2024).
Cai, Q. et al. Automated echocardiographic diastolic function grading: a hybrid multi-task deep learning and machine learning approach. Int. J. Cardiol. 416, 132504 (2024).
He, B. et al. Blinded, randomized trial of sonographer versus AI cardiac function assessment. Nature 616, 520–524 (2023).
Balagopalan, A. et al. Machine learning for healthcare that matters: reorienting from technical novelty to equitable impact. PLoS Digit. Health 3, e0000474 (2024).
Ouyang, D. et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 580, 252–256 (2020).
Kusunose, K. et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images. JACC Cardiovasc. Imaging 13, 374–381 (2020).
Asch, F. M. et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert. Circ. Cardiovasc. Imaging 12, e009303 (2019).
Asch, F. M. et al. Deep learning-based automated echocardiographic quantification of left ventricular ejection fraction: a point-of-care solution. Circ. Cardiovasc. Imaging 14, e012293 (2021).
Myhre, P. L. et al. Concordance of left ventricular volumes and function measurements between two human readers, a fully automated AI algorithm, and the 3D heart model. Front. Cardiovasc. Med. 11, 1400333 (2024).
Lang, R. M. et al. Use of machine learning to improve echocardiographic image interpretation workflow: a disruptive paradigm change? J. Am. Soc. Echocardiogr. 34, 443–445 (2021).
Leclerc, S. et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38, 2198–2210 (2019).
Smistad, E. et al. Real-time automatic ejection fraction and foreshortening detection using deep learning. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 2595–2604 (2020).
Ghorbani, A. et al. Deep learning interpretation of echocardiograms. npj Digit. Med. 3, 10 (2020).
Alvén, J., Hagberg, E., Hagerman, D., Petersen, R. & Hjelmgren, O. A deep multi-stream model for robust prediction of left ventricular ejection fraction in 2D echocardiography. Sci. Rep. 14, 2104 (2024).
Salte, I. M. et al. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography. JACC Cardiovasc. Imaging 14, 1918–1928 (2021).
Salte, I. M. et al. Deep learning for improved precision and reproducibility of left ventricular strain in echocardiography: a test–retest study. J. Am. Soc. Echocardiogr. 36, 788–799 (2023).
Nyberg, J. et al. Deep learning improves test-retest reproducibility of regional strain in echocardiography. Eur. Heart J. Imaging Methods Pract. 2, qyae092 (2024).
Stowell, C. C. et al. 2-dimensional echocardiographic global longitudinal strain with artificial intelligence using open data from a UK-wide collaborative. JACC Cardiovasc. Imaging 17, 865–876 (2024).
Kwan, A. C. et al. Deep learning-derived myocardial strain. JACC Cardiovasc. Imaging 17, 715–725 (2024).
Schneider, M. et al. A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF. Int. J. Cardiovasc. Imaging 37, 577–586 (2021).
Huang, W. et al. Point-of-care AI-enhanced novice echocardiography for screening heart failure (PANES-HF). Sci. Rep. 14, 13503 (2024).
Narang, A. et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 6, 624–632 (2021).
Berg, E. A. R. et al. Fully automatic estimation of global left ventricular systolic function using deep learning in transoesophageal echocardiography. Eur. Heart J. Imaging Methods Pract. 1, qyad007 (2023).
Yu, J. et al. Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography. J. Clin. Monit. Comput. https://doi.org/10.1007/s10877-023-01118-x (2024).
Lau, E. S. et al. Deep learning-enabled assessment of left heart structure and function predicts cardiovascular outcomes. J. Am. Coll. Cardiol. 82, 1936–1948 (2023).
Howard, J. P. et al. Automated left ventricular dimension assessment using artificial intelligence developed and validated by a UK-wide collaborative. Circ.: Cardiovasc. Imaging 14, e011951 (2021).
Duffy, G. et al. High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA Cardiol. 7, 386–395 (2022).
Gilbert, A. et al. User-intended doppler measurement type prediction combining CNNs with smart post-processing. IEEE J. Biomed. Health Inform. 25, 2113–2124 (2021).
Jeon, J. et al. A unified approach for comprehensive analysis of various spectral and tissue doppler echocardiography. in 2024 IEEE International Symposium on Biomedical Imaging (ISBI) https://doi.org/10.1109/ISBI56570.2024.10635387 (IEEE, 2024).
Jevsikov, J. et al. Automated mitral inflow Doppler peak velocity measurement using deep learning. Comput. Biol. Med. 171, 108192 (2024).
Chen, X. et al. Artificial intelligence-assisted left ventricular diastolic function assessment and grading: multiview versus single view. J. Am. Soc. Echocardiogr. 36, 1064–1078 (2023).
Park, J. et al. Artificial intelligence-enhanced automation of left ventricular diastolic assessment: a pilot study for feasibility, diagnostic validation, and outcome prediction. Cardiovasc. Diagn. Ther. 14, 352–366 (2024).
O’Neill, T., Kang, P., Hagendorff, A. & Tayal, B. The clinical applications of left atrial strain: a comprehensive review. Medicina 60, 693 (2024).
Ferkh, A., Clark, A. & Thomas, L. Left atrial phasic function: physiology, clinical assessment and prognostic value. Heart 109, 1661–1669 (2023).
Yaku, H., Komtebedde, J., Silvestry, F. E. & Shah, S. J. Deep learning-based automated measurements of echocardiographic estimators of invasive pulmonary capillary wedge pressure perform equally to core lab measurements: results from reduce LAP-HF II. J. Am. Coll. Cardiol. https://doi.org/10.1016/S0735-1097%2824%2902306-4 (2024).
Konstam, M. A. et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation 137, e578–e622 (2018).
Tokodi, M. et al. Deep learning-based prediction of right ventricular ejection fraction using 2D echocardiograms. JACC Cardiovasc. Imaging 16, 1005–1018 (2023).
Murayama, M. et al. Deep learning to assess right ventricular ejection fraction from two-dimensional echocardiograms in precapillary pulmonary hypertension. Echocardiography 41, e15812 (2024).
Chernyshov, A. et al. Automated segmentation and quantification of the right ventricle in 2-D echocardiography. Ultrasound Med. Biol. 50, 540–548 (2024).
Arbelo, E. et al. 2023 ESC guidelines for the management of cardiomyopathies. Eur. Heart J. 44, 3503–3626 (2023).
Alwan, L. et al. Current and evolving multimodality cardiac imaging in managing transthyretin amyloid cardiomyopathy. JACC Cardiovasc. Imaging 17, 195–211 (2024).
Yu, X. et al. Using deep learning method to identify left ventricular hypertrophy on echocardiography. Int. J. Cardiovasc. Imaging 38, 759–769 (2022).
Kamel, M. A. et al. How artificial intelligence can enhance the diagnosis of cardiac amyloidosis: a review of recent advances and challenges. J. Cardiovasc. Dev. Dis. 11, 118 (2024).
Goto, S. et al. Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms. Nat. Commun. 12, 2726 (2021).
Oikonomou, E. K. et al. Artificial intelligence-enabled electrocardiography and echocardiography to track preclinical progression of transthyretin amyloid cardiomyopathy. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehaf450 (2025).
Narula, S., Shameer, K., Salem Omar, A. M., Dudley, J. T. & Sengupta, P. P. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J. Am. Coll. Cardiol. 68, 2287–2295 (2016).
Krishna, H. et al. Fully automated artificial intelligence assessment of aortic stenosis by echocardiography. J. Am. Soc. Echocardiogr. 36, 769–777 (2023).
Holste, G., Oikonomou, E. K., Mortazavi, B. J., Wang, Z. & Khera, R. Efficient deep learning-based automated diagnosis from echocardiography with contrastive self-supervised learning. Commun. Med. 4, 1–10 (2024).
Holste, G. et al. Severe aortic stenosis detection by deep learning applied to echocardiography. Eur. Heart J. 44, 4592–4604 (2023).
Wessler, B. S. et al. Automated detection of aortic stenosis using machine learning. J. Am. Soc. Echocardiogr. 36, 411–420 (2023).
Long, A. et al. Deep learning for echo analysis, tracking, and evaluation of mitral regurgitation (DELINEATE-MR). Circulation https://doi.org/10.1161/CIRCULATIONAHA.124.068996 (2024).
Vrudhula, A. et al. High-throughput deep learning detection of mitral regurgitation. Circulation 150, 923–933 (2024).
Wifstad, S. V. et al. EasyPISA: automatic integrated PISA measurements of mitral regurgitation from 2-D color-doppler using deep learning. Ultrasound Med. Biol. https://doi.org/10.1016/j.ultrasmedbio.2024.06.008 (2024).
Sadeghpour, A. et al. An automated machine learning-based quantitative multiparametric approach for mitral regurgitation severity grading. JACC Cardiovasc. Imaging https://doi.org/10.1016/j.jcmg.2024.06.011 (2024).
Bernard, J. et al. Integrating echocardiography parameters with explainable artificial intelligence for data-driven clustering of primary mitral regurgitation phenotypes. JACC Cardiovasc. Imaging 16, 1253–1267 (2023).
Nedadur, R., Wang, B. & Tsang, W. Artificial intelligence for the echocardiographic assessment of valvular heart disease. Heart 108, 1592–1599 (2022).
Bozkurt, B. et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. https://doi.org/10.1016/j.cardfail.2021.01.022 (2021).
Akerman, A. P. et al. Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence. JACC Adv. https://doi.org/10.1016/j.jacadv.2023.100452 (2023).
Cassianni, C. et al. Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence is associated with cardiac mortality and heart failure hospitalization. J. Am. Soc. Echocardiogr. 37, 914–916 (2024).
Lin, X. et al. Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction. Front. Cardiovasc. Med. 9, 903660 (2022).
Slivnick, J. A. et al. Echocardiographic detection of regional wall motion abnormalities using artificial intelligence compared to human readers. J. Am. Soc. Echocardiogr. 37, 655–663 (2024).
European Society of Cardiology. PROTEUS trial suggests AI for heart scans may benefit decision making for less-experienced clinicians (ESC, 2024); https://www.escardio.org/The-ESC/Press-Office/Press-releases/PROTEUS-Trial-suggests-AI-for-heart-scans-may-benefit-decision-making-for-less-experienced-clinicians.
Laumer, F. et al. Assessment of artificial intelligence in echocardiography diagnostics in differentiating Takotsubo syndrome from myocardial infarction. JAMA Cardiol. 7, 494–503 (2022).
Liao, Z. et al. Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning. Pulm. Circ. 13, e12272 (2023).
Hirata, Y., Tsuji, T., Kotoku, J., Sata, M. & Kusunose, K. Echocardiographic artificial intelligence for pulmonary hypertension classification. Heart 110, 586–593 (2024).
Mor-Avi, V. et al. Real-time artificial intelligence–based guidance of echocardiographic imaging by novices: image quality and suitability for diagnostic interpretation and quantitative analysis. Circ. Cardiovasc. Imaging 16, e015569 (2023).
Pasdeloup, D. et al. Real-time echocardiography guidance for optimized apical standard views. Ultrasound Med. Biol. 49, 333–346 (2023).
Sabo, S. et al. Real-time guidance by deep learning of experienced operators to improve the standardization of echocardiographic acquisitions. Eur. Heart J. Imaging Methods Pract. 1, qyad040 (2023).
Sabo, S. et al. Real-time guiding by deep learning during echocardiography to reduce left ventricular foreshortening and measurement variability. Eur. Heart J. Imaging Methods Pract. 1, qyad012 (2023).
Luong, C. et al. Automated estimation of echocardiogram image quality in hospitalized patients. Int. J. Cardiovasc. Imaging 37, 229–239 (2021).
Huang, K.-C. et al. Artificial intelligence aids cardiac image quality assessment for improving precision in strain measurements. JACC Cardiovasc. Imaging 14, 335–345 (2021).
Van De Vyver, G. et al. Regional image quality scoring for 2-D echocardiography using deep learning. Ultrasound Med. Biol. 51, 638–649 (2025).
Liu, Z. et al. Automated deep neural network-based identification, localization, and tracking of cardiac structures for ultrasound-guided interventional surgery. J. Thorac. Dis. 15, 2129–2140 (2023).
Baum, E. et al. Acquisition of cardiac point-of-care ultrasound images with deep learning: a randomized trial for educational outcomes with novices. CHEST Pulm. 1, 100023 (2023).
Li, K., Li, A., Xu, Y., Xiong, H. & Meng, M. Q.-H. RL-TEE: autonomous probe guidance for transesophageal echocardiography based on attention-augmented deep reinforcement learning. IEEE Trans. Autom. Sci. Eng. 21, 1526–1538 (2024).
Steffner, K. R. et al. Deep learning for transesophageal echocardiography view classification. Sci. Rep. 14, 11 (2024).
Kagiyama, N. Artificial intelligence-based automated echocardiographic measurements and the workflow of sonographers: randomized crossover trial (AI-Echo RCT) (American Heart Association, 2024).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05919342 (2023).
Motazedian, P. et al. Diagnostic accuracy of point-of-care ultrasound with artificial intelligence-assisted assessment of left ventricular ejection fraction. npj Digit. Med. 6, 201 (2023).
Kagiyama, N. et al. Multicenter validation study for automated left ventricular ejection fraction assessment using a handheld ultrasound with artificial intelligence. Sci. Rep. 14, 15359 (2024).
Oikonomou, E. K. et al. Artificial intelligence-guided detection of under-recognised cardiomyopathies on point-of-care cardiac ultrasonography: a multicentre study. Lancet Digit. Health 7, e113–e123 (2025).
Campell, R. OPERA – AI — reporting of handheld echocardiography in suspected heart failure (European Society of Cardiology Congress, 2023).
Tromp, J. et al. Nurse-led home-based detection of cardiac dysfunction by ultrasound: results of the CUMIN pilot study. Eur. Heart J. Digit. Health 5, 163–169 (2024).
Peck, D. et al. The use of artificial intelligence guidance for rheumatic heart disease screening by novices. J. Am. Soc. Echocardiogr. 36, 724–732 (2023).
Lyon, A. R. et al. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European hematology association (EHA), the European society for therapeutic radiology and oncology (ESTRO) and the international cardio-oncology society (IC-OS). Eur. Heart J. Cardiovasc. Imaging 23, e333–e465 (2022).
Papadopoulou, S.-L. et al. Artificial intelligence-assisted evaluation of cardiac function by oncology staff in chemotherapy patients. Eur. Heart J. Digit. Health 5, 278–287 (2024).
Oikonomou, E. K. et al. A multimodal video-based AI biomarker for aortic stenosis development and progression. JAMA Cardiol. 9, 534–544 (2024).
Oo, M. M. et al. Artificial intelligence-assisted automated heart failure detection and classification from electronic health records. ESC Heart Fail. 11, 2769–2777 (2024).
Pandey, A. et al. Deep-learning models for the echocardiographic assessment of diastolic dysfunction. JACC Cardiovasc. Imaging 14, 1887–1900 (2021).
Sengupta, P. P. et al. A machine-learning framework to identify distinct phenotypes of aortic stenosis severity. JACC Cardiovasc. Imaging 14, 1707–1720 (2021).
Sánchez-Puente, A. et al. Machine learning to optimize the echocardiographic follow-up of aortic stenosis. JACC Cardiovasc. Imaging 16, 733–744 (2023).
Sengupta, P. P., Dey, D., Davies, R. H., Duchateau, N. & Yanamala, N. Challenges for augmenting intelligence in cardiac imaging. Lancet Digit. Health 6, e739–e748 (2024).
Díaz-Rodríguez, N. et al. Connecting the dots in trustworthy artificial intelligence: from AI principles, ethics, and key requirements to responsible AI systems and regulation. Inf. Fusion 99, 101896 (2023).
Lüscher, T. F., Wenzl, F. A., D’Ascenzo, F., Friedman, P. A. & Antoniades, C. Artificial intelligence in cardiovascular medicine: clinical applications. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehae465 (2024).
Khera, R. et al. Transforming cardiovascular care with artificial intelligence: from discovery to practice: JACC state-of-the-art review. J. Am. Coll. Cardiol. 84, 97–114 (2024).
Tseng, A. S., Lopez-Jimenez, F. & Pellikka, P. A. Future guidelines for artificial intelligence in echocardiography. J. Am. Soc. Echocardiogr. 35, 878–882 (2022).
Vrudhula, A., Kwan, A. C., Ouyang, D. & Cheng, S. Machine learning and bias in medical imaging: opportunities and challenges. Circ. Cardiovasc. Imaging 17, e015495 (2024).
Mihan, A., Pandey, A. & Spall, H. G. V. Mitigating the risk of artificial intelligence bias in cardiovascular care. Lancet Digit. Health 6, e749–e754 (2024).
Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).
Duffy, G. et al. Confounders mediate AI prediction of demographics in medical imaging. npj Digit. Med. 5, 188 (2022).
Brown, A. et al. Detecting shortcut learning for fair medical AI using shortcut testing. Nat. Commun. 14, 4314 (2023).
Banerjee, I. et al. “Shortcuts” causing bias in radiology artificial intelligence: causes, evaluation, and mitigation. J. Am. Coll. Radiol. 20, 842–851 (2023).
Yang, Y., Zhang, H., Gichoya, J. W., Katabi, D. & Ghassemi, M. The limits of fair medical imaging AI in real-world generalization. Nat. Med. https://doi.org/10.1038/s41591-024-03113-4 (2024).
Dohare, S. et al. Loss of plasticity in deep continual learning. Nature 632, 768–774 (2024).
Gama, F. et al. Implementation frameworks for artificial intelligence translation into health care practice: scoping review. J. Med. Internet Res. 24, e32215 (2022).
Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).
European Parliament. Directorate general for parliamentary research services. artificial intelligence in healthcare: applications, risks, and ethical and societal impacts (2022); https://data.europa.eu/doi/10.2861/568473.
Khera, R., Simon, M. A. & Ross, J. S. Automation bias and assistive AI: risk of harm from AI-driven clinical decision support. JAMA 330, 2255–2257 (2023).
Wang, F. & Beecy, A. Implementing AI models in clinical workflows: a roadmap. BMJ Evid. Based Med. https://doi.org/10.1136/bmjebm-2023-112727 (2024).
Gill, S. K. et al. Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare. Eur. Heart J. 44, 713–725 (2023).
Christensen, M., Vukadinovic, M., Yuan, N. & Ouyang, D. Vision–language foundation model for echocardiogram interpretation. Nat. Med. 30, 1481–1488 (2024).
Barros-Gomes, S. et al. Characteristics and consequences of work-related musculoskeletal pain among cardiac sonographers compared with peer employees: a multisite cross-sectional study. J. Am. Soc. Echocardiogr. 32, 1138–1146 (2019).
Li, K. et al. Autonomous navigation of an ultrasound probe towards standard scan planes with deep reinforcement learning. in 2021 IEEE International Conference on Robotics and Automation (ICRA) https://doi.org/10.1109/ICRA48506.2021.9561295 (IEEE, 2021).
Soemantoro, R., Kardos, A., Tang, G. & Zhao, Y. An AI-powered navigation framework to achieve an automated acquisition of cardiac ultrasound images. Sci. Rep. 13, 15008 (2023).
Amezcua, K.-L. et al. Design and testing of ultrasound probe adapters for a robotic imaging platform. Sci. Rep. 14, 5102 (2024).
Villalobos Lizardi, J. C. et al. A guide for assessment of myocardial stiffness in health and disease. Nat. Cardiovasc. Res. 1, 8–22 (2022).
Caenen, A. et al. Ultrasound shear wave elastography in cardiology. JACC Cardiovasc. Imaging 17, 314–329 (2024).
Hathaway, Q. A. et al. Ultrasonic texture features for assessing cardiac remodeling and dysfunction. J. Am. Coll. Cardiol. 80, 2187–2201 (2022).
Sengupta, P. P. & Chandrashekhar, Y. Advancing myocardial tissue analysis using echocardiography. JACC Cardiovasc. Imaging 17, 228–231 (2024).
Jamthikar, A. D. et al. Cardiac ultrasonic tissue characterization in myocardial infarction based on deep transfer learning and radiomics features. Preprint at medRxiv https://doi.org/10.1101/2024.03.29.24305067 (2024).
Amado-Rey, A., GonçalvesSeabra, A. & Stieglitz, T. Towards ultrasound wearable technology for cardiovascular monitoring: from device development to clinical validation. IEEE Rev. Biomed. Eng. https://doi.org/10.1109/RBME.2024.3410399 (2024).
Moisello, E. et al. PMUT and CMUT devices for biomedical applications: a review. IEEE Access 12, 18640–18657 (2024).
Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).
Democratizing echocardiography with AI. Us2.ai https://us2.ai/publications/ai-echo-white-paper/ (2023).
Turing, A. M. On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc. s2-42, 230–265 (1937).
Hunter, D. J. & Holmes, C. Where medical statistics meets artificial intelligence. N. Engl. J. Med. 389, 1211–1219 (2023).
Haug, C. J. & Drazen, J. M. Artificial intelligence and machine learning in clinical medicine. N. Engl. J. Med. 388, 1201–1208 (2023).
Shehab, M. et al. Machine learning in medical applications: a review of state-of-the-art methods. Comput. Biol. Med. 145, 105458 (2022).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Sidey-Gibbons, J. A. M. & Sidey-Gibbons, C. J. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19, 64 (2019).
Reading Turchioe, M. et al. Systematic review of current natural language processing methods and applications in cardiology. Heart 108, 909–916 (2022).
Will ChatGPT transform healthcare? Nat. Med. 29, 505–506 (2023).
Boonstra, M. J., Weissenbacher, D., Moore, J. H., Gonzalez-Hernandez, G. & Asselbergs, F. W. Artificial intelligence: revolutionizing cardiology with large language models. Eur. Heart J. 45, 332–345 (2024).
Amadou, A. A. et al. EchoApex: a general-purpose vision foundation model for echocardiography. Preprint at https://doi.org/10.48550/arXiv.2410.11092 (2024).
Zhang, Z., Wu, Q., Ding, S., Wang, X. & Ye, J. Echo-vision-FM: a pre-training and fine-tuning framework for echocardiogram videos vision foundation model. Preprint at medRxiv https://doi.org/10.1101/2024.10.09.24315195 (2024).
Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med. 13, 1 (2015).
Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J. & Denniston, A. K. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).
Sengupta, P. P. et al. Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist. JACC Cardiovasc. Imaging 13, 2017–2035 (2020).
Lafitte, S. et al. Integrating artificial intelligence into an echocardiography department: feasibility and comparative study of automated versus human measurements in a high-volume clinical setting. Arch. Cardiovasc. Dis. https://doi.org/10.1016/j.acvd.2025.04.051 (2025).