Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 17013 (2017).

PubMed 

Google Scholar
 

Stocchi, F. et al. Parkinson disease therapy: current strategies and future research priorities. Nat. Rev. Neurol. 20, 695–707 (2024).

PubMed 

Google Scholar
 

Steib, S. et al. A single bout of aerobic exercise improves motor skill consolidation in Parkinson’s disease. Front. Aging Neurosci. 10, 328 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Fang, X. et al. Association of levels of physical activity with risk of Parkinson disease: a systematic review and meta-analysis. JAMA Netw. Open 1, e182421 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Langeskov-Christensen, M. et al. Exercise as medicine in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 95, 1077–1088 (2024).

PubMed 

Google Scholar
 

Walzik, D. et al. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct. Target. Ther. 9, 138 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Petzinger, G. M. et al. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 12, 716–726 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Yao, H. et al. Exercise training upregulates CD55 to suppress complement-mediated synaptic phagocytosis in Parkinson’s disease. J. Neuroinflammation 21, 246 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Li, Z. et al. Exercise attenuates mitochondrial autophagy and neuronal degeneration in MPTP induced Parkinson’s disease by regulating inflammatory pathway. Folia Neuropathol. 61, 426–432 (2023).

PubMed 

Google Scholar
 

Safdar, A., Saleem, A. & Tarnopolsky, M. A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 12, 504–517 (2016).

PubMed 

Google Scholar
 

Ruiz-González, D. et al. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: a systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 128, 394–405 (2021).

PubMed 

Google Scholar
 

Soke, F. et al. Effects of task-oriented training combined with aerobic training on serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels in people with Parkinson’s disease: a randomized controlled study. Exp. Gerontol. 150, 111384 (2021).

PubMed 

Google Scholar
 

Speck, A. E. et al. Treadmill exercise attenuates L-DOPA-induced dyskinesia and increases striatal levels of glial cell-derived neurotrophic factor (GDNF) in hemiparkinsonian mice. Mol. Neurobiol. 56, 2944–2951 (2019).

PubMed 

Google Scholar
 

Pérez-Domínguez, M., Tovar-Y-Romo, L. B. & Zepeda, A. Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior. Rev. Neurosci 29, 1–20 (2018).

PubMed 

Google Scholar
 

Chuang, C.-S. et al. Modulation of mitochondrial dynamics by treadmill training to improve gait and mitochondrial deficiency in a rat model of Parkinson’s disease. Life Sci. 191, 236–244 (2017).

PubMed 

Google Scholar
 

Ebanks, B. et al. The dysregulated Pink1- Drosophila mitochondrial proteome is partially corrected with exercise. Aging 13, 14709–14728 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Cadet, P. et al. Cyclic exercise induces anti-inflammatory signal molecule increases in the plasma of Parkinson’s patients. Int. J. Mol. Med. 12, 485–492 (2003).

PubMed 

Google Scholar
 

Mak, M. K. Y. & Wong-Yu, I. S. K. Six-month community-based brisk walking and balance exercise alleviates motor symptoms and promotes functions in people with Parkinson’s disease: a randomized controlled trial. J. Parkinsons Dis. 11, 1431–1441 (2021).

PubMed 

Google Scholar
 

van der Kolk, N. M. et al. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: a double-blind, randomised controlled trial. Lancet Neurol. 18, 998–1008 (2019).

PubMed 

Google Scholar
 

Schenkman, M. et al. Effect of high-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 75, 219–226 (2018).

PubMed 

Google Scholar
 

Chen, Y.-H. et al. Exercise ameliorates motor deficits and improves dopaminergic functions in the rat hemi-Parkinson’s model. Sci. Rep. 8, 3973 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Fernandez-Del-Olmo, M. et al. Directed connectivity in Parkinson’s disease patients during over-ground and treadmill walking. Exp. Gerontol. 178, 112220 (2023).

PubMed 

Google Scholar
 

Bougou, V. et al. Active and passive cycling decrease subthalamic β oscillations in Parkinson’s disease. Mov. Disord. 39, 85–93 (2024).

PubMed 

Google Scholar
 

Gaßner, H. et al. Perturbation treadmill training improves clinical characteristics of gait and balance in Parkinson’s disease. J. Parkinsons Dis. 9, 413–426 (2019).

PubMed 

Google Scholar
 

Hou, L. et al. Exercise-induced neuroprotection of the nigrostriatal dopamine system in Parkinson’s disease. Front. Aging Neurosci. 9, 358 (2017).

PubMed 
PubMed Central 

Google Scholar
 

de Laat, B. et al. Intense exercise increases dopamine transporter and neuromelanin concentrations in the substantia nigra in Parkinson’s disease. NPJ Parkinsons Dis. 10, 34 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Johansson, M. E. et al. Aerobic exercise alters brain function and structure in Parkinson’s disease: a randomized controlled trial. Ann. Neurol. 91, 203–216 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Sacheli, M. A. et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov. Disord.34, 1891–1900 (2019).

PubMed 

Google Scholar
 

Rotondo, R. et al. Dose-response effects of physical exercise standardized volume on peripheral biomarkers, clinical response, and brain connectivity in Parkinson’s disease: a prospective, observational, cohort study. Front. Neurol. 15, 1412311 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Jansen, A. E. et al. High intensity aerobic exercise improves bimanual coordination of grasping forces in Parkinson’s disease. Parkinsonism Relat. Disord. 87, 13–19 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Li, F. et al. Tai chi and postural stability in patients with Parkinson’s disease. N. Engl. J. Med. 366, 511–519 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Li, G. et al. Effect of long-term Tai Chi training on Parkinson’s disease: a 3.5-year follow-up cohort study. J. Neurol. Neurosurg. Psychiatry 95, 222–228 (2024).

PubMed 

Google Scholar
 

Cristini, J. et al. The effects of exercise on sleep quality in persons with Parkinson’s disease: a systematic review with meta-analysis. Sleep. Med. Rev. 55, 101384 (2021).

PubMed 

Google Scholar
 

Song, R. et al. The impact of Tai Chi and Qigong mind-body exercises on motor and non-motor function and quality of life in Parkinson’s disease: A systematic review and meta-analysis. Parkinsonism Relat. Disord. 41, 3–13 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Luo, K. et al. Effectiveness of Yijinjing on cognitive and motor functions in patients with Parkinson’s disease: study protocol for a randomized controlled trial. Front. Neurol. 15, 1357777 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Cherup, N. P. et al. Yoga meditation enhances proprioception and balance in individuals diagnosed with Parkinson’s disease. Percept. Mot. Skills 128, 304–323 (2021).

PubMed 

Google Scholar
 

Duarte, J. D. S. et al. Physical activity based on dance movements as complementary therapy for Parkinson’s disease: effects on movement, executive functions, depressive symptoms, and quality of life. PLoS ONE 18, e0281204 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Ernst, M. et al. Physical exercise for people with Parkinson’s disease: a systematic review and network meta-analysis. Cochrane Database Syst. Rev. 1, CD013856 (2023).

PubMed 

Google Scholar
 

da Silva, P.G. et al. Neurotrophic factors in Parkinson’s disease are regulated by exercise: Evidence-based practice. J. Neurol. Sci. 363, 5–15 (2016).

PubMed 

Google Scholar
 

Gamborg, M. et al. Parkinson’s disease and intensive exercise therapy – an updated systematic review and meta-analysis. Acta Neurol. Scand. 145, 504–528 (2022).

PubMed 

Google Scholar
 

Uhrbrand, A. et al. Parkinson’s disease and intensive exercise therapy-a systematic review and meta-analysis of randomized controlled trials. J. Neurol. Sci. 353, 9–19 (2015).

PubMed 

Google Scholar
 

Ben-Zeev, T., Shoenfeld, Y. & Hoffman, J. R. The effect of exercise on neurogenesis in the brain. Isr. Med. Assoc. J. IMAJ 24, 533–538 (2022).

PubMed 

Google Scholar
 

Castro, S. L. et al. Blueberry juice augments exercise-induced neuroprotection in a Parkinson’s disease model through modulation of GDNF levels. IBRO Neurosci. Rep. 12, 217–227 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Castilla-Cortazar, I. et al. Is insulin-like growth factor-1 involved in Parkinson’s disease development? J. Transl. Med. 18, 70 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Stuckenschneider, T. et al. Disease-inclusive exercise classes improve physical fitness and reduce depressive symptoms in individuals with and without Parkinson’s disease-a feasibility study. Brain Behav. 11, e2352 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Chang, H.M. et al. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum. Reprod. Update 23, 1–18 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Goulding, S. R. et al. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease. Neural Regen. Res. 15, 1432–1436 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Goulding, S. R. et al. Gene co-expression analysis of the human substantia nigra identifies BMP2 as a neurotrophic factor that can promote neurite growth in cells overexpressing wild-type or A53T α-synuclein. Parkinsonism Relat. Disord. 64, 194–201 (2019).

PubMed 

Google Scholar
 

Hegarty, S. V., O’Keeffe, G. W. & Sullivan, A. M. BMP-Smad 1/5/8 signalling in the development of the nervous system. Prog. Neurobiol. 109, 28–41 (2013).

PubMed 

Google Scholar
 

Terauchi, A. et al. The projection-specific signals that establish functionally segregated dopaminergic synapses. Cell 186, 3845–3861 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Kowianski, P. et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol. Neurobiol. 38, 579–593 (2018).

PubMed 

Google Scholar
 

Barreda Tomás, F.J. et al. BDNF Expression in Cortical GABAergic Interneurons. Int. J. Mol. Sci. 21, 1567 (2020).

Hirsch, M. A., Iyer, S. S. & Sanjak, M. Exercise-induced neuroplasticity in human Parkinson’s disease: what is the evidence telling us? Parkinsonism Relat. Disord. 22, S78–S81 (2016).

PubMed 

Google Scholar
 

Paterno, A., Polsinelli, G. & Federico, B. Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: a systematic review of clinical studies in Parkinson’s disease. Front. Physiol. 15, 1352305 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Bastioli, G. et al. Voluntary exercise boosts striatal dopamine release: evidence for the necessary and sufficient role of BDNF. J. Neurosci. 42, 4725–4736 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Brunelli, A. et al. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Med. Sci. Sports Exerc. 44, 1871–1880 (2012).

PubMed 

Google Scholar
 

Andreska, T. et al. Induction of BDNF expression in layer II/III and layer V neurons of the motor cortex is essential for motor learning. J. Neurosci.40, 6289–6308 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Campbell, T. S. et al. Early Life Stress Affects Bdnf Regulation: A Role for Exercise Interventions. Int. J. Mol. Sci. 23, 11729 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Wu, S.-Y. et al. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 25, 135–146 (2011).

PubMed 

Google Scholar
 

Leem, Y.-H. et al. Neurogenic effects of rotarod walking exercise in subventricular zone, subgranular zone, and substantia nigra in MPTP-induced Parkinson’s disease mice. Sci. Rep. 12, 10544 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Wang, C. et al. Analgesic effect of exercise on neuropathic pain via regulating the complement component 3 of reactive astrocytes. Anesth. Analg. 139, 840–850 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Kelty, T. J. et al. Resistance-exercise training attenuates LPS-induced astrocyte remodeling and neuroinflammatory cytokine expression in female Wistar rats. J. Appl. Physiol. 132, 317–326 (2022).

PubMed 

Google Scholar
 

Nakanishi, K. et al. Effect of low-intensity motor balance and coordination exercise on cognitive functions, hippocampal Abeta deposition, neuronal loss, neuroinflammation, and oxidative stress in a mouse model of Alzheimer’s disease. Exp. Neurol. 337, 113590 (2021).

PubMed 

Google Scholar
 

Qiu, X. et al. C-reactive protein and risk of Parkinson’s disease: a systematic review and meta-analysis. Front. Neurol. 10, 384 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Tang, X. Q. et al. Retraction: aerobic exercise reverses the NF-kappaB/NLRP3 inflammasome/5-HT pathway by upregulating irisin to alleviate post-stroke depression. Ann. Transl. Med. 12, 128 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Yang, G. et al. Changes Observed in Potential Key Candidate Genes of Peripheral Immunity Induced by Tai Chi among Patients with Parkinsonas Disease. Genes 13, 1863 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Li, G. et al. Mechanisms of motor symptom improvement by long-term Tai Chi training in Parkinson’s disease patients. Transl. Neurodegener. 11, 6 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Leem, Y.-H. et al. Suppression of neuroinflammation and α-synuclein oligomerization by rotarod walking exercise in subacute MPTP model of Parkinson’s disease. Neurochem. Int. 165, 105519 (2023).

PubMed 

Google Scholar
 

Jang, Y. et al. Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson’s disease mice. Brain Res. 1655, 186–193 (2017).

PubMed 

Google Scholar
 

Marino, G. et al. Intensive exercise ameliorates motor and cognitive symptoms in experimental Parkinson’s disease restoring striatal synaptic plasticity. Sci. Adv. 9, eadh1403 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Wang, W. et al. Treadmill exercise alleviates neuronal damage by suppressing NLRP3 inflammasome and microglial activation in the MPTP mouse model of Parkinson’s disease. Brain Res. Bull. 174, 349–358 (2021).

PubMed 

Google Scholar
 

Xu, J. et al. Voluntary exercise alleviates neural functional deficits in Parkinson’s disease mice by inhibiting microglial ferroptosis via SLC7A11/ALOX12 axis. NPJ Parkinsons Dis. 11, 55 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Eldeeb, M. A. et al. Mitochondrial quality control in health and in Parkinson’s disease. Physiol. Rev. 102, 1721–1755 (2022).

PubMed 

Google Scholar
 

Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Henrich, M. T. et al. Mitochondrial dysfunction in Parkinson’s disease – a key disease hallmark with therapeutic potential. Mol. Neurodegener. 18, 83 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Zhang, S. et al. Skeletal muscle-specific DJ-1 ablation-induced atrogenes expression and mitochondrial dysfunction contributing to muscular atrophy. J. Cachexia Sarcopenia Muscle 14, 2126–2142 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Alcalá-Zúniga, D. et al. Enriched environment contributes to the recovery from neurotoxin-induced Parkinson’s disease pathology. Mol. Neurobiol. 61, 6734–6753 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Gan, Z. et al. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res. 28, 969–980 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Ludtmann, M. H. R. et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat. Commun. 9, 2293 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Tung, Y.-T. et al. 10 weeks low intensity treadmill exercise intervention ameliorates motor deficits and sustains muscle mass via decreasing oxidative damage and increasing mitochondria function in a rat model of Parkinson’s disease. Life Sci. 350, 122733 (2024).

PubMed 

Google Scholar
 

Koo, J. H. & Cho, J. Y. Erratum to: treadmill exercise attenuates alpha-synuclein levels by promoting mitochondrial function and autophagy possibly via SIRT1 in the chronic MPTP/P-induced mouse model of Parkinson’s disease. Neurotox. Res. 32, 532–533 (2017).

PubMed 

Google Scholar
 

Rezaee, Z. et al. Effects of preventive treadmill exercise on the recovery of metabolic and mitochondrial factors in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurotox. Res. 35, 908–917 (2019).

PubMed 

Google Scholar
 

Zhou, L. et al. The Role of SIRT3 in Exercise and Aging. Cells 11, 2596 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Muñoz, A. et al. Physical exercise improves aging-related changes in angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the substantia nigra. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1594–1601 (2018).

PubMed 

Google Scholar
 

Koo, J.-H., Cho, J.-Y. & Lee, U.-B. Treadmill exercise alleviates motor deficits and improves mitochondrial import machinery in an MPTP-induced mouse model of Parkinson’s disease. Exp. Gerontol. 89, 20–29 (2017).

PubMed 

Google Scholar
 

Jang, Y. et al. Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD. Life Sci. 209, 455–465 (2018).

PubMed 

Google Scholar
 

Hwang, D.-J. et al. Neuroprotective effect of treadmill exercise possibly via regulation of lysosomal degradation molecules in mice with pharmacologically induced Parkinson’s disease. J. Physiol. Sci.68, 707–716 (2018).

PubMed 

Google Scholar
 

Kelly, N. A. et al. Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson’s disease. J. Appl. Physiol.116, 582–592 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Zhang, X. et al. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson’s disease. NPJ Parkinsons Dis. 9, 13 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Kam, T.-I. et al. Amelioration of pathologic α-synuclein-induced Parkinson’s disease by irisin. Proc. Natl. Acad. Sci. USA 119, e2204835119 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Dutta, D. et al. Treadmill exercise reduces alpha-synuclein spreading via PPARalpha. Cell Rep. 40, 111058 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Bao, J.-F. et al. Irisin, a fascinating field in our times. Trends Endocrinol. Metab. TEM 33, 601–613 (2022).

PubMed 

Google Scholar
 

Zhao, R. et al. Role of irisin in bone diseases. Front. Endocrinol. 14, 1212892 (2023).


Google Scholar
 

Peng, J. & Wu, J. Effects of the FNDC5/irisin on elderly dementia and cognitive impairment. Front. Aging Neurosci. 14, 863901 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Dicarlo, M. et al. Irisin levels in cerebrospinal fluid correlate with biomarkers and clinical dementia scores in Alzheimer disease. Ann. Neurol. 96, 61–73 (2024).

PubMed 

Google Scholar
 

Zhang, H. et al. Irisin, an exercise-induced bioactive peptide beneficial for health promotion during aging process. Ageing Res. Rev. 80, 101680 (2022).

PubMed 

Google Scholar
 

Sun, B. et al. Irisin reduces bone fracture by facilitating osteogenesis and antagonizing TGF-β/Smad signaling in a growing mouse model of osteogenesis imperfecta. J. Orthop. Translat. 38, 175–189 (2023).

PubMed 

Google Scholar
 

Guo, P. et al. Irisin rescues blood-brain barrier permeability following traumatic brain injury and contributes to the neuroprotection of exercise in traumatic brain injury. Oxid. Med. Cell. Longev. 2021, 1118981 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Sadier, N. S. et al. Irisin: An unveiled bridge between physical exercise and a healthy brain. Life Sci. 339, 122393 (2024).

PubMed 

Google Scholar
 

Wagner, C. A. et al. Translational research on cognitive impairment in chronic kidney disease. Nephrol. Dialysis Transplant. 40, 621–631 (2025).


Google Scholar
 

Wang, Y. et al. Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin alphaVbeta5/AMPK signaling pathway after intracerebral hemorrhage in mice. J. Neuroinflammation 19, 82 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Mao, M. Z. et al. FNDC5/irisin-enriched sEVs conjugated with bone-targeting aptamer alleviate osteoporosis: a potential alternative to exercise. J. Nanobiotechnology 23, 504 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Shi, X. et al. Relationship of irisin with disease severity and dopamine uptake in Parkinson’s disease patients. Neuroimage Clin. 41, 103555 (2024).

PubMed 

Google Scholar
 

Li, D.-J. et al. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metab. Clin. Exp. 68, 31–42 (2017).

PubMed 

Google Scholar
 

Qiu, R. et al. Irisin’s emerging role in Parkinson’s disease research: a review from molecular mechanisms to therapeutic prospects. Life Sci. 357, 123088 (2024).

PubMed 

Google Scholar
 

Choi, J.-W. et al. Aerobic exercise attenuates LPS-induced cognitive dysfunction by reducing oxidative stress, glial activation, and neuroinflammation. Redox Biol. 71, 103101 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Zhu, M. et al. Irisin promotes autophagy and attenuates NLRP3 inflammasome activation in Parkinson’s disease. Int. Immunopharmacol. 149, 114201 (2025).

PubMed 

Google Scholar
 

Raefsky, S. M. & Mattson, M. P. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic. Biol. Med. 102, 203–216 (2017).

PubMed 

Google Scholar
 

Valenzuela, P. L. et al. Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res. Rev. 62, 101108 (2020).

PubMed 

Google Scholar
 

Liu, Y. et al. The neuroprotective effect of irisin in ischemic stroke. Front. Aging Neurosci. 12, 588958 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Lourenco, M. V. et al. Irisin stimulates protective signaling pathways in rat hippocampal neurons. Front. Cell. Neurosci. 16, 953991 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Leger, C. et al. Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin. Int. J. Mol. Sci. 25, 1213 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

PubMed 
PubMed Central 

Google Scholar
 

Jedrychowski, M. P. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 22, 734–740 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Tsuchiya, Y. et al. Resistance exercise induces a greater irisin response than endurance exercise. Metab. Clin. Exp. 64, 1042–1050 (2015).

PubMed 

Google Scholar
 

Anastasilakis, A. D. et al. Circulating irisin in healthy, young individuals: day-night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. J. Clin. Endocrinol. Metab. 99, 3247–3255 (2014).

PubMed 

Google Scholar
 

Guo, M. et al. BMAL1/PGC1α4-FNDC5/irisin axis impacts distinct outcomes of time-of-day resistance exercise. J. Sport Health Sci. 14, 100968 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Nowell, J. et al. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease. Ageing Res. Rev. 89, 101979 (2023).

PubMed 

Google Scholar
 

Sun, Y. et al. Irisin delays the onset of type 1 diabetes in NOD mice by enhancing intestinal barrier. Int. J. Biol. Macromol. 265, 130857 (2024). (Pt 1).

PubMed 

Google Scholar
 

Islam, M. R. et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat. Metab. 3, 1058–1070 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Shin, M. S. et al. Treadmill exercise facilitates synaptic plasticity on dopaminergic neurons and fibers in the mouse model with Parkinson’s disease. Neurosci. Lett. 621, 28–33 (2016).

PubMed 

Google Scholar
 

Fathalla, A. M. et al. Adenosine A2A receptor blockade prevents rotenone-induced motor impairment in a rat model of Parkinsonism. Front. Behav. Neurosci. 10, 35 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Viana, S. D. et al. The effects of physical exercise on nonmotor symptoms and on neuroimmune RAGE network in experimental Parkinsonism. J. Appl. Physiol.123, 161–171 (2017).

PubMed 

Google Scholar
 

Li, R. et al. Exercise attenuates neuronal degeneration in Parkinson’s disease rat model by regulating the level of adenosine 2A receptor. Folia Neuropathol.61, 217–223 (2023).

PubMed 

Google Scholar
 

Liu, W. et al. Regular aerobic exercise-alleviated dysregulation of CAMKIIα carbonylation to mitigate Parkinsonism via homeostasis of apoptosis with autophagy. J. Neuropathol. Exp. Neurol. 79, 46–61 (2020).

PubMed 

Google Scholar
 

Shen, J. et al. Potential molecular mechanism of exercise reversing insulin resistance and improving neurodegenerative diseases. Front. Physiol. 15, 1337442 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Fischetti, F. et al. The role of exercise parameters on small extracellular vesicles and microRNAs cargo in preventing neurodegenerative diseases. Front. Physiol. 14, 1241010 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Goulding, S. R. et al. Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson’s disease. Neural Regen. Res. 17, 38–44 (2022).

PubMed 

Google Scholar
 

Fukuchi, M. et al. Visualizing changes in brain-derived neurotrophic factor (BDNF) expression using bioluminescence imaging in living mice. Sci. Rep. 7, 4949 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Rodrigues, ÉF. et al. Challenges in recombinant brain-derived neurotrophic factor production. Trends Biotechnol. 42, 522–525 (2024).

PubMed 

Google Scholar
 

Allen, S. J. et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther.138, 155–175 (2013).

PubMed 

Google Scholar
 

Wang, J. et al. Irisin protects against sepsis-associated encephalopathy by suppressing ferroptosis via activation of the Nrf2/GPX4 signal axis. Free Radic. Biol. Med. 187, 171–184 (2022).

PubMed 

Google Scholar
 

Xu, X. et al. Irisin prevents hypoxic-ischemic brain damage in rats by inhibiting oxidative stress and protecting the blood-brain barrier. Peptides 161, 170945 (2023).

PubMed 

Google Scholar
 

Guo, P. et al. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain Behav. 9, e01425 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Dehghan, F. et al. Irisin injection mimics exercise effects on the brain proteome. Eur. J. Neurosci. 54, 7422–7441 (2021).

PubMed 

Google Scholar
 

Guo, M. et al. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction. J. Cachexia Sarcopenia Muscle 14, 391–405 (2023).

PubMed 

Google Scholar
 

Zhao, R. et al. Aerobic Exercise Restores Hippocampal Neurogenesis and Cognitive Function by Decreasing Microglia Inflammasome Formation Through Irisin/NLRP3 Pathway. Aging Cell 24, e70061 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Gonçalves, R. A. & De Felice, F. G. The crosstalk between brain and periphery: implications for brain health and disease. Neuropharmacology 197, 108728 (2021).

PubMed 

Google Scholar
 

Khalil, M.H. et al. The Impact of Walking on BDNF as a Biomarker of Neuroplasticity: A Systematic Review. Brain Sci. 15, 254 (2025).

PubMed 
PubMed Central 

Google Scholar
 

Zigmond, M. J. et al. Triggering endogenous neuroprotective processes through exercise in models of dopamine deficiency. Parkinsonism Relat. Disord. 15, S42–S45 (2009).

PubMed 

Google Scholar
 

Harvey, B. K., Hoffer, B. J. & Wang, Y. Stroke and TGF-beta proteins: glial cell line-derived neurotrophic factor and bone morphogenetic protein. Pharmacol. Ther.105, 113–125 (2005).

PubMed 

Google Scholar
 

Traor‚ M. et al. An embryonic CaVá1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Sci. Transl. Med. 11, eaaw1131 (2019).


Google Scholar