Neelakanta G, Sultana H. Transmission-Blocking vaccines: focus on Anti-Vector vaccines against Tick-Borne diseases. Arch Immunol Ther Exp (Warsz). 2015;63(3):169–79. https://doi.org/10.1007/s00005-014-0324-8.
Neelakanta G, Sultana H. Tick saliva and salivary glands: what do we know so Far on their role in arthropod blood feeding and pathogen transmission. Front Cell Infect Microbiol. 2021;11:816547. https://doi.org/10.3389/fcimb.2021.816547.
Rowan S, Mohseni N, Chang M, Burger H, Peters M, Mir S. From tick to test: A comprehensive review of tick-Borne disease diagnostics and surveillance methods in the united States. Life (Basel). 2023;13(10). https://doi.org/10.3390/life13102048.
Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin N Am. 2015;29(2):341–55. https://doi.org/10.1016/j.idc.2015.02.007.
Rodino KG, Theel ES, Pritt BS. Tick-Borne diseases in the united States. Clin Chem. 2020;66(4):537–48. https://doi.org/10.1093/clinchem/hvaa040.
Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JW, et al. Lyme borreliosis. Nat Rev Dis Primers. 2016;2:16090. https://doi.org/10.1038/nrdp.2016.90.
Gould EA, Solomon T, Pathogenic flaviviruses. Lancet. 2008;371(9611):500–9. https://doi.org/10.1016/S0140-6736(08)60238-X.
Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, et al. Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis. 2005;11(12):1828–34. https://doi.org/10.3201/eid1112.050898.
Chen SM, Dumler JS, Bakken JS, Walker DH. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of Human-Disease. J Clin Microbiol. 1994;32(3):589–95. https://doi.org/10.1128/Jcm.32.3.589-595.1994.
Rikihisa Y. Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol. 2010;8(5):328–39. https://doi.org/10.1038/nrmicro2318.
Rikihisa Y. Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev. 2011;24(3):469–89. https://doi.org/10.1128/CMR.00064-10.
Hodzic E, Fish D, Maretzki CM, De Silva AM, Feng S, Barthold SW. Acquisition and transmission of the agent of human granulocytic ehrlichiosis by Ixodes scapularis ticks. J Clin Microbiol. 1998;36(12):3574–8. https://doi.org/10.1128/JCM.36.12.3574-3578.1998.
Anderson JF, Magnarelli LA. Biology of ticks. Infect Dis Clin N Am. 2008;22(2):195–215.
Sonenshine DE. In: Roe R, editor. Biology of Ticks, second edition. 2 ed. Oxford University Press; 2014.
Pusterla N, Chae JS, Kimsey RB, Berger Pusterla J, DeRock E, Dumler JS, et al. Transmission of Anaplasma phagocytophila (human granulocytic ehrlichiosis agent) in horses using experimentally infected ticks (Ixodes scapularis). J Vet Med B Infect Dis Vet Public Health. 2002;49(10):484–8. https://doi.org/10.1046/j.1439-0450.2002.00598.x.
Zeman P, Januska J, Orolinova M, Stuen S, Struhar V, Jebavy L. High Seroprevalence of granulocytic ehrlichiosis distinguishes sheep that were the source of an alimentary epidemic of tick-borne encephalitis. Wien Klin Wochenschr. 2004;116(17–18):614–6. https://doi.org/10.1007/s00508-004-0191-0.
Cabezas-Cruz A, Alberdi P, Ayllon N, Valdes JJ, Pierce R, Villar M, et al. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics. 2016;11(4):303–19. https://doi.org/10.1080/15592294.2016.1163460.
Carlyon JA, Abdel-Latif D, Pypaert M, Lacy P, Fikrig E. Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infect Immun. 2004;72(8):4772–83. https://doi.org/10.1128/IAI.72.8.4772-4783.2004.
Carlyon JA, Fikrig E. Invasion and survival strategies of Anaplasma phagocytophilum. Cell Microbiol. 2003;5(11):743–54.
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Pena A, et al. Tick-Pathogen interactions and vector competence: identification of molecular drivers for Tick-Borne diseases. Front Cell Infect Microbiol. 2017;7:114. https://doi.org/10.3389/fcimb.2017.00114.
de la Fuente J, Villar M, Cabezas-Cruz A, Estrada-Pena A, Ayllon N, Alberdi P. Tick-Host-Pathogen interactions: conflict and Cooperation. PLoS Pathog. 2016;12(4):e1005488. https://doi.org/10.1371/journal.ppat.1005488.
Munderloh UG, Jauron SD, Fingerle V, Leitritz L, Hayes SF, Hautman JM, et al. Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J Clin Microbiol. 1999;37(8):2518–24.
Pedra JH, Narasimhan S, Rendic D, DePonte K, Bell-Sakyi L, Wilson IB, et al. Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cell Microbiol. 2010;12(9):1222–34. https://doi.org/10.1111/j.1462-5822.2010.01464.x.
Dahmani M, Anderson JF, Sultana H, Neelakanta G. Rickettsial pathogen uses arthropod Tryptophan pathway metabolites to evade reactive oxygen species in tick cells. Cell Microbiol. 2020;22(10):e13237. https://doi.org/10.1111/cmi.13237.
Mahesh PP, Namjoshi P, Sultana H, Neelakanta G. Immunization against arthropod protein impairs transmission of rickettsial pathogen from ticks to the vertebrate host. NPJ Vaccines. 2023;8(1):79. https://doi.org/10.1038/s41541-023-00678-y.
Namjoshi P, Dahmani M, Sultana H, Neelakanta G. Rickettsial pathogen inhibits tick cell death through Tryptophan metabolite mediated activation of p38 MAP kinase. iScience. 2023;26(1):105730. https://doi.org/10.1016/j.isci.2022.105730.
Ramasamy E, Taank V, Anderson JF, Sultana H, Neelakanta G. Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host. PLoS Genet. 2020;16(7):e1008856. https://doi.org/10.1371/journal.pgen.1008856.
Taank V, Zhou W, Zhuang X, Anderson JF, Pal U, Sultana H, et al. Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections. Parasit Vectors. 2018;11(1):593. https://doi.org/10.1186/s13071-018-3160-6.
Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Arthropod transcriptional activator protein-1 (AP-1) aids tick-rickettsial pathogen survival in the cold. Sci Rep. 2018;8(1):11409. https://doi.org/10.1038/s41598-018-29654-6.
Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Rickettsial pathogen perturbs tick circadian gene to infect the vertebrate host. Int J Mol Sci. 2022;23(7). https://doi.org/10.3390/ijms23073545.
Taank V, Dutta S, Dasgupta A, Steeves TK, Fish D, Anderson JF, et al. Human rickettsial pathogen modulates arthropod organic anion transporting polypeptide and Tryptophan pathway for its survival in ticks. Sci Rep. 2017;7(1):13256. https://doi.org/10.1038/s41598-017-13559-x.
Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447(5):653–65. https://doi.org/10.1007/s00424-003-1168-y.
Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705. https://doi.org/10.1111/j.1476-5381.2009.00430.x.
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123. https://doi.org/10.1152/physrev.00025.2013.
Stieger B, Hagenbuch B. Organic anion-transporting polypeptides. Curr Top Membr. 2014;73:205–32. https://doi.org/10.1016/B978-0-12-800223-0.00005-0.
Uwai Y, Honjo E. Transport of xanthurenic acid by rat/human organic anion transporters OAT1 and OAT3. Biosci Biotechnol Biochem. 2013;77(7):1517–21. https://doi.org/10.1271/bbb.130178.
Radulovic Z, Porter LM, Kim TK, Mulenga A. Comparative bioinformatics, Temporal and Spatial expression analyses of Ixodes scapularis organic anion transporting polypeptides. Ticks Tick Borne Dis. 2014;5(3):287–98. https://doi.org/10.1016/j.ttbdis.2013.12.002.
Namjoshi P, Lubembe DM, Sultana H, Neelakanta G. Antibody-blocking of a tick transporter impairs Anaplasma phagocytophilum colonization in haemaphysalis longicornis ticks. Sci Rep. 2024;14(1):9003. https://doi.org/10.1038/s41598-024-59315-w.
Mahesh PP, Kolape J, Sultana H, Neelakanta G. McFarland Standards-Based spectrophotometry method for calculating approximate multiplicity of infection for an obligate intracellular bacterium Anaplasma phagocytophilum. Microorganisms. 2025;13(3). https://doi.org/10.3390/microorganisms13030662.
Holden K, Boothby JT, Anand S, Massung RF. Detection of borrelia burgdorferi, Ehrlichia chaffeensis, and Anaplasma phagocytophilum in ticks (Acari: Ixodidae) from a coastal region of California. J Med Entomol. 2003;40(4):534–9. https://doi.org/10.1603/0022-2585-40.4.534.
Zeidner NS, Burkot TR, Massung R, Nicholson WL, Dolan MC, Rutherford JS, et al. Transmission of the agent of human granulocytic ehrlichiosis by Ixodes spinipalpis ticks: evidence of an enzootic cycle of dual infection with borrelia burgdorferi in Northern Colorado. J Infect Dis. 2000;182(2):616–9. https://doi.org/10.1086/315715.
Neelakanta G, Sultana H, Sonenshine DE, Andersen JF. Identification and characterization of a histamine-binding lipocalin-like molecule from the relapsing fever tick Ornithodoros turicata. Insect Mol Biol. 2018;27(2):177–87. https://doi.org/10.1111/imb.12362.
Sultana H, Neelakanta G, Kantor FS, Malawista SE, Fish D, Montgomery RR, et al. Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J Exp Med. 2010;207(8):1727–43. https://doi.org/10.1084/jem.20100276.
Hubbard TD, Murray IA, Perdew GH. Indole and Tryptophan metabolism: endogenous and dietary routes to ah receptor activation. Drug Metab Dispos. 2015;43(10):1522–35. https://doi.org/10.1124/dmd.115.064246.
DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana EM, et al. Kynurenic acid is a potent endogenous Aryl hydrocarbon receptor ligand that synergistically induces Interleukin-6 in the presence of inflammatory signaling. Toxicol Sci. 2010;115(1):89–97. https://doi.org/10.1093/toxsci/kfq024.
Hart TM, Sonnert ND, Tang X, Chaurasia R, Allen PE, Hunt JR et al. An atlas of human vector-borne microbe interactions reveals pathogenicity mechanisms. Cell. 2024;187(15):4113-27 e13. https://doi.org/10.1016/j.cell.2024.05.023.
Humphreys IR, Zhang J, Baek M, Wang YX, Krishnakumar A, Pei JM, et al. Protein interactions in human pathogens revealed through deep learning. Nat Microbiol. 2024;9(10). https://doi.org/10.1038/s41564-024-01791-x.
Schweppe DK, Harding C, Chavez JD, Wu X, Ramage E, Singh PK, et al. Host-Microbe protein interactions during bacterial infection. Chem Biol. 2015;22(11):1521–30. https://doi.org/10.1016/j.chembiol.2015.09.015.
Wang PJ, Wang JJ, Xiao YS, Murray JW, Novikoff PM, Angeletti RH, et al. Interaction with PDZK1 is required for expression of organic anion transporting protein 1A1 on the hepatocyte surface. J Biol Chem. 2005;280(34):30143–9. https://doi.org/10.1074/jbc.M503969200.
Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Ren Physiol. 2006;290(2):F251–61. https://doi.org/10.1152/ajprenal.00439.2004.
Auguste Y, Delague V, Desvignes JP, Longepied G, Gnisci A, Besnier P, et al. Loss of Calmodulin- and Radial-Spoke-Associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men. Am J Hum Genet. 2018;103(3):413–20. https://doi.org/10.1016/j.ajhg.2018.07.013.
Jiao QB, Bai YZ, Akaike T, Takeshima H, Ishikawa Y, Minamisawa S. Sarcalumenin is essential for maintaining cardiac function during endurance exercise training. Am J Physiol-Heart C. 2009;297(2):H576–82. https://doi.org/10.1152/ajpheart.00946.2008.
Tang S, Chen T, Yang M, Wang L, Yu Z, Xie B, et al. Extracellular calcium elicits feedforward regulation of the Toll-like receptor-triggered innate immune response. Cell Mol Immunol. 2017;14(2):180–91. https://doi.org/10.1038/cmi.2015.59.
Vig M, Kinet JP. Calcium signaling in immune cells. Nat Immunol. 2009;10(1):21–7. https://doi.org/10.1038/ni.f.220.
Kulkarni A, Pandey A, Trainor P, Carlisle S, Yu W, Kukutla P, et al. Aryl hydrocarbon receptor and kruppel like factor 10 mediate a transcriptional axis modulating immune homeostasis in mosquitoes. Sci Rep. 2022;12(1):6005. https://doi.org/10.1038/s41598-022-09817-2.