Neelakanta G, Sultana H. Transmission-Blocking vaccines: focus on Anti-Vector vaccines against Tick-Borne diseases. Arch Immunol Ther Exp (Warsz). 2015;63(3):169–79. https://doi.org/10.1007/s00005-014-0324-8.


Google Scholar
 

Neelakanta G, Sultana H. Tick saliva and salivary glands: what do we know so Far on their role in arthropod blood feeding and pathogen transmission. Front Cell Infect Microbiol. 2021;11:816547. https://doi.org/10.3389/fcimb.2021.816547.


Google Scholar
 

Rowan S, Mohseni N, Chang M, Burger H, Peters M, Mir S. From tick to test: A comprehensive review of tick-Borne disease diagnostics and surveillance methods in the united States. Life (Basel). 2023;13(10). https://doi.org/10.3390/life13102048.

Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin N Am. 2015;29(2):341–55. https://doi.org/10.1016/j.idc.2015.02.007.


Google Scholar
 

Rodino KG, Theel ES, Pritt BS. Tick-Borne diseases in the united States. Clin Chem. 2020;66(4):537–48. https://doi.org/10.1093/clinchem/hvaa040.


Google Scholar
 

Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JW, et al. Lyme borreliosis. Nat Rev Dis Primers. 2016;2:16090. https://doi.org/10.1038/nrdp.2016.90.


Google Scholar
 

Gould EA, Solomon T, Pathogenic flaviviruses. Lancet. 2008;371(9611):500–9. https://doi.org/10.1016/S0140-6736(08)60238-X.


Google Scholar
 

Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, et al. Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis. 2005;11(12):1828–34. https://doi.org/10.3201/eid1112.050898.


Google Scholar
 

Chen SM, Dumler JS, Bakken JS, Walker DH. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of Human-Disease. J Clin Microbiol. 1994;32(3):589–95. https://doi.org/10.1128/Jcm.32.3.589-595.1994.


Google Scholar
 

Rikihisa Y. Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol. 2010;8(5):328–39. https://doi.org/10.1038/nrmicro2318.


Google Scholar
 

Rikihisa Y. Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev. 2011;24(3):469–89. https://doi.org/10.1128/CMR.00064-10.


Google Scholar
 

Hodzic E, Fish D, Maretzki CM, De Silva AM, Feng S, Barthold SW. Acquisition and transmission of the agent of human granulocytic ehrlichiosis by Ixodes scapularis ticks. J Clin Microbiol. 1998;36(12):3574–8. https://doi.org/10.1128/JCM.36.12.3574-3578.1998.


Google Scholar
 

Anderson JF, Magnarelli LA. Biology of ticks. Infect Dis Clin N Am. 2008;22(2):195–215.


Google Scholar
 

Sonenshine DE. In: Roe R, editor. Biology of Ticks, second edition. 2 ed. Oxford University Press; 2014.

Pusterla N, Chae JS, Kimsey RB, Berger Pusterla J, DeRock E, Dumler JS, et al. Transmission of Anaplasma phagocytophila (human granulocytic ehrlichiosis agent) in horses using experimentally infected ticks (Ixodes scapularis). J Vet Med B Infect Dis Vet Public Health. 2002;49(10):484–8. https://doi.org/10.1046/j.1439-0450.2002.00598.x.


Google Scholar
 

Zeman P, Januska J, Orolinova M, Stuen S, Struhar V, Jebavy L. High Seroprevalence of granulocytic ehrlichiosis distinguishes sheep that were the source of an alimentary epidemic of tick-borne encephalitis. Wien Klin Wochenschr. 2004;116(17–18):614–6. https://doi.org/10.1007/s00508-004-0191-0.


Google Scholar
 

Cabezas-Cruz A, Alberdi P, Ayllon N, Valdes JJ, Pierce R, Villar M, et al. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics. 2016;11(4):303–19. https://doi.org/10.1080/15592294.2016.1163460.


Google Scholar
 

Carlyon JA, Abdel-Latif D, Pypaert M, Lacy P, Fikrig E. Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infect Immun. 2004;72(8):4772–83. https://doi.org/10.1128/IAI.72.8.4772-4783.2004.


Google Scholar
 

Carlyon JA, Fikrig E. Invasion and survival strategies of Anaplasma phagocytophilum. Cell Microbiol. 2003;5(11):743–54.


Google Scholar
 

de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Pena A, et al. Tick-Pathogen interactions and vector competence: identification of molecular drivers for Tick-Borne diseases. Front Cell Infect Microbiol. 2017;7:114. https://doi.org/10.3389/fcimb.2017.00114.


Google Scholar
 

de la Fuente J, Villar M, Cabezas-Cruz A, Estrada-Pena A, Ayllon N, Alberdi P. Tick-Host-Pathogen interactions: conflict and Cooperation. PLoS Pathog. 2016;12(4):e1005488. https://doi.org/10.1371/journal.ppat.1005488.


Google Scholar
 

Munderloh UG, Jauron SD, Fingerle V, Leitritz L, Hayes SF, Hautman JM, et al. Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J Clin Microbiol. 1999;37(8):2518–24.


Google Scholar
 

Pedra JH, Narasimhan S, Rendic D, DePonte K, Bell-Sakyi L, Wilson IB, et al. Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cell Microbiol. 2010;12(9):1222–34. https://doi.org/10.1111/j.1462-5822.2010.01464.x.


Google Scholar
 

Dahmani M, Anderson JF, Sultana H, Neelakanta G. Rickettsial pathogen uses arthropod Tryptophan pathway metabolites to evade reactive oxygen species in tick cells. Cell Microbiol. 2020;22(10):e13237. https://doi.org/10.1111/cmi.13237.


Google Scholar
 

Mahesh PP, Namjoshi P, Sultana H, Neelakanta G. Immunization against arthropod protein impairs transmission of rickettsial pathogen from ticks to the vertebrate host. NPJ Vaccines. 2023;8(1):79. https://doi.org/10.1038/s41541-023-00678-y.


Google Scholar
 

Namjoshi P, Dahmani M, Sultana H, Neelakanta G. Rickettsial pathogen inhibits tick cell death through Tryptophan metabolite mediated activation of p38 MAP kinase. iScience. 2023;26(1):105730. https://doi.org/10.1016/j.isci.2022.105730.


Google Scholar
 

Ramasamy E, Taank V, Anderson JF, Sultana H, Neelakanta G. Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host. PLoS Genet. 2020;16(7):e1008856. https://doi.org/10.1371/journal.pgen.1008856.


Google Scholar
 

Taank V, Zhou W, Zhuang X, Anderson JF, Pal U, Sultana H, et al. Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections. Parasit Vectors. 2018;11(1):593. https://doi.org/10.1186/s13071-018-3160-6.


Google Scholar
 

Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Arthropod transcriptional activator protein-1 (AP-1) aids tick-rickettsial pathogen survival in the cold. Sci Rep. 2018;8(1):11409. https://doi.org/10.1038/s41598-018-29654-6.


Google Scholar
 

Khanal S, Taank V, Anderson JF, Sultana H, Neelakanta G. Rickettsial pathogen perturbs tick circadian gene to infect the vertebrate host. Int J Mol Sci. 2022;23(7). https://doi.org/10.3390/ijms23073545.

Taank V, Dutta S, Dasgupta A, Steeves TK, Fish D, Anderson JF, et al. Human rickettsial pathogen modulates arthropod organic anion transporting polypeptide and Tryptophan pathway for its survival in ticks. Sci Rep. 2017;7(1):13256. https://doi.org/10.1038/s41598-017-13559-x.


Google Scholar
 

Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447(5):653–65. https://doi.org/10.1007/s00424-003-1168-y.


Google Scholar
 

Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705. https://doi.org/10.1111/j.1476-5381.2009.00430.x.


Google Scholar
 

Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123. https://doi.org/10.1152/physrev.00025.2013.


Google Scholar
 

Stieger B, Hagenbuch B. Organic anion-transporting polypeptides. Curr Top Membr. 2014;73:205–32. https://doi.org/10.1016/B978-0-12-800223-0.00005-0.


Google Scholar
 

Uwai Y, Honjo E. Transport of xanthurenic acid by rat/human organic anion transporters OAT1 and OAT3. Biosci Biotechnol Biochem. 2013;77(7):1517–21. https://doi.org/10.1271/bbb.130178.


Google Scholar
 

Radulovic Z, Porter LM, Kim TK, Mulenga A. Comparative bioinformatics, Temporal and Spatial expression analyses of Ixodes scapularis organic anion transporting polypeptides. Ticks Tick Borne Dis. 2014;5(3):287–98. https://doi.org/10.1016/j.ttbdis.2013.12.002.


Google Scholar
 

Namjoshi P, Lubembe DM, Sultana H, Neelakanta G. Antibody-blocking of a tick transporter impairs Anaplasma phagocytophilum colonization in haemaphysalis longicornis ticks. Sci Rep. 2024;14(1):9003. https://doi.org/10.1038/s41598-024-59315-w.


Google Scholar
 

Mahesh PP, Kolape J, Sultana H, Neelakanta G. McFarland Standards-Based spectrophotometry method for calculating approximate multiplicity of infection for an obligate intracellular bacterium Anaplasma phagocytophilum. Microorganisms. 2025;13(3). https://doi.org/10.3390/microorganisms13030662.

Holden K, Boothby JT, Anand S, Massung RF. Detection of borrelia burgdorferi, Ehrlichia chaffeensis, and Anaplasma phagocytophilum in ticks (Acari: Ixodidae) from a coastal region of California. J Med Entomol. 2003;40(4):534–9. https://doi.org/10.1603/0022-2585-40.4.534.


Google Scholar
 

Zeidner NS, Burkot TR, Massung R, Nicholson WL, Dolan MC, Rutherford JS, et al. Transmission of the agent of human granulocytic ehrlichiosis by Ixodes spinipalpis ticks: evidence of an enzootic cycle of dual infection with borrelia burgdorferi in Northern Colorado. J Infect Dis. 2000;182(2):616–9. https://doi.org/10.1086/315715.


Google Scholar
 

Neelakanta G, Sultana H, Sonenshine DE, Andersen JF. Identification and characterization of a histamine-binding lipocalin-like molecule from the relapsing fever tick Ornithodoros turicata. Insect Mol Biol. 2018;27(2):177–87. https://doi.org/10.1111/imb.12362.


Google Scholar
 

Sultana H, Neelakanta G, Kantor FS, Malawista SE, Fish D, Montgomery RR, et al. Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J Exp Med. 2010;207(8):1727–43. https://doi.org/10.1084/jem.20100276.


Google Scholar
 

Hubbard TD, Murray IA, Perdew GH. Indole and Tryptophan metabolism: endogenous and dietary routes to ah receptor activation. Drug Metab Dispos. 2015;43(10):1522–35. https://doi.org/10.1124/dmd.115.064246.


Google Scholar
 

DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana EM, et al. Kynurenic acid is a potent endogenous Aryl hydrocarbon receptor ligand that synergistically induces Interleukin-6 in the presence of inflammatory signaling. Toxicol Sci. 2010;115(1):89–97. https://doi.org/10.1093/toxsci/kfq024.


Google Scholar
 

Hart TM, Sonnert ND, Tang X, Chaurasia R, Allen PE, Hunt JR et al. An atlas of human vector-borne microbe interactions reveals pathogenicity mechanisms. Cell. 2024;187(15):4113-27 e13. https://doi.org/10.1016/j.cell.2024.05.023.

Humphreys IR, Zhang J, Baek M, Wang YX, Krishnakumar A, Pei JM, et al. Protein interactions in human pathogens revealed through deep learning. Nat Microbiol. 2024;9(10). https://doi.org/10.1038/s41564-024-01791-x.

Schweppe DK, Harding C, Chavez JD, Wu X, Ramage E, Singh PK, et al. Host-Microbe protein interactions during bacterial infection. Chem Biol. 2015;22(11):1521–30. https://doi.org/10.1016/j.chembiol.2015.09.015.


Google Scholar
 

Wang PJ, Wang JJ, Xiao YS, Murray JW, Novikoff PM, Angeletti RH, et al. Interaction with PDZK1 is required for expression of organic anion transporting protein 1A1 on the hepatocyte surface. J Biol Chem. 2005;280(34):30143–9. https://doi.org/10.1074/jbc.M503969200.


Google Scholar
 

Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Ren Physiol. 2006;290(2):F251–61. https://doi.org/10.1152/ajprenal.00439.2004.


Google Scholar
 

Auguste Y, Delague V, Desvignes JP, Longepied G, Gnisci A, Besnier P, et al. Loss of Calmodulin- and Radial-Spoke-Associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men. Am J Hum Genet. 2018;103(3):413–20. https://doi.org/10.1016/j.ajhg.2018.07.013.


Google Scholar
 

Jiao QB, Bai YZ, Akaike T, Takeshima H, Ishikawa Y, Minamisawa S. Sarcalumenin is essential for maintaining cardiac function during endurance exercise training. Am J Physiol-Heart C. 2009;297(2):H576–82. https://doi.org/10.1152/ajpheart.00946.2008.


Google Scholar
 

Tang S, Chen T, Yang M, Wang L, Yu Z, Xie B, et al. Extracellular calcium elicits feedforward regulation of the Toll-like receptor-triggered innate immune response. Cell Mol Immunol. 2017;14(2):180–91. https://doi.org/10.1038/cmi.2015.59.


Google Scholar
 

Vig M, Kinet JP. Calcium signaling in immune cells. Nat Immunol. 2009;10(1):21–7. https://doi.org/10.1038/ni.f.220.


Google Scholar
 

Kulkarni A, Pandey A, Trainor P, Carlisle S, Yu W, Kukutla P, et al. Aryl hydrocarbon receptor and kruppel like factor 10 mediate a transcriptional axis modulating immune homeostasis in mosquitoes. Sci Rep. 2022;12(1):6005. https://doi.org/10.1038/s41598-022-09817-2.


Google Scholar
Â