Burden of disease scenarios. For 204 countries and territories, 2022–2050: a forecasting analysis for the global burden of disease study 2021. Lancet. 2024;403(10440):2204–56.


Google Scholar
 

Sonkin D, Thomas A, Teicher BA. Cancer treatments: past, present, and future. Cancer Genet. 2024;286–287:18–24.


Google Scholar
 

Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10–45.


Google Scholar
 

Qiong L, Shuyao X, Shan X, Qian F, Jiaying T, Yao X, et al. Recent advances in the glycolytic processes linked to tumor metastasis. Curr Mol Pharmacol. 2024;17:e18761429308361.


Google Scholar
 

Joyson P, Karanvir S, Sumit P, Rohit P, Shah Alam K, Bhupinder K, et al. An update on recently developed analytical and Bio-analytical methods for some anticancer drugs. Curr Pharm Anal. 2023;19(2):117–35.


Google Scholar
 

Karati D, Kumar D. Molecular insight into the apoptotic mechanism of cancer cells: an explicative review. Curr Mol Pharmacol. 2024;17:e18761429273223.


Google Scholar
 

Yuwei Q, Ninghua Y, Fan Z, Shi Q, Xiaolei C, Wenjie Z. Tumor organoid model and its pharmacological applications in tumorigenesis prevention. Curr Mol Pharmacol. 2023;16(4):435–47.


Google Scholar
 

Chen F, Wendl MC, Wyczalkowski MA, Bailey MH, Li Y, Ding L. Moving pan-cancer studies from basic research toward the clinic. Nat Cancer. 2021;2(9):879–90.


Google Scholar
 

Wang T, Yao S, Li S, Fei X, Zhang M. A prognostic model based on the augmin family genes for LGG patients. Sci Rep. 2023;13(1):7520.


Google Scholar
 

Tang L, Chen Z, Wei C, Liu H, Wang B, Yu T, et al. The significance of HAUS1 and its relationship with immune microenvironment in hepatocellular carcinoma. J Cancer. 2024;15(5):1328–41.


Google Scholar
 

Zhang X, Zhuang R, Ye Q, Zhuo J, Chen K, Lu D, et al. High expression of human augmincomplex submit 3 indicates poor prognosis and associates with tumor progression in hepatocellular carcinoma. J Cancer. 2019;10(6):1434–43.


Google Scholar
 

Ray D, Chatterjee N. A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between type 2 diabetes and prostate cancer. PLoS Genet. 2020;16(12):e1009218.


Google Scholar
 

Zhu H, Fang K, Fang G. FAM29A, a target of Plk1 regulation, controls the partitioning of NEDD1 between the mitotic spindle and the centrosomes. J Cell Sci. 2009;122(Pt 15):2750–9.


Google Scholar
 

Rajičić M, Makunin A, Adnađević T, Trifonov V, Vujošević M, Blagojević J. B chromosomes’ sequences in yellow-necked mice Apodemus flavicollis-exploring the transcription. Life. 2021. https://doi.org/10.3390/life12010050.


Google Scholar
 

MotieGhader H, Masoudi-Sobhanzadeh Y, Ashtiani SH, Masoudi-Nejad A. mRNA and MicroRNA selection for breast cancer molecular subtype stratification using meta-heuristic based algorithms. Genomics. 2020;112(5):3207–17.


Google Scholar
 

Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8.


Google Scholar
 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Volume 347. New York, NY: Science; 2015. p. 1260419. 6220.


Google Scholar
 

Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. Ualcan: an update to the integrated cancer data analysis platform, vol. 25. New York, NY: Neoplasia; 2022. p. 18–27.


Google Scholar
 

Shen A, Liu L, Huang Y, Shen Z, Wu M, Chen X, et al. Down-Regulating HAUS6 suppresses cell proliferation by activating the p53/p21 pathway in colorectal cancer. Front Cell Dev Biol. 2021;9:772077.


Google Scholar
 

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.


Google Scholar
 

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. Protein Data Bank Nucleic Acids Res. 2000;28(1):235–42.


Google Scholar
 

Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. Methsurv: a web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics. 2018;10(3):277–88.


Google Scholar
 

Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. Sramp: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44(10):e91.


Google Scholar
 

Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, et al. Genemania update 2018. Nucleic Acids Res. 2018;46(W1):W60-w4.


Google Scholar
 

Tang Z, Kang B, Li C, Chen T, Zhang Z. Gepia2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556-60.


Google Scholar
 

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass)). 2021;2(3):100141.


Google Scholar
 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.


Google Scholar
 

Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, et al. The Gene Ontology knowledgebase in 2023. Genetics. 2023. https://doi.org/10.1093/genetics/iyad031.


Google Scholar
 

Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 2025;53(D1):D672-d7.


Google Scholar
 

Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023;51(D1):D1425-d31.


Google Scholar
 

Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.


Google Scholar
 

Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200–2.


Google Scholar
 

Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017. https://doi.org/10.1200/PO.17.00073.


Google Scholar
 

Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48(4):812–e3014.


Google Scholar
 

Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, et al. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020;12(1):21.


Google Scholar
 

Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8.


Google Scholar
 

Zeng Z, Wong CJ, Yang L, Ouardaoui N, Li D, Zhang W, et al. TISMO: syngeneic mouse tumor database to model tumor immunity and immunotherapy response. Nucleic Acids Res. 2022;50(D1):D1391-d7.


Google Scholar
 

Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Comparative toxicogenomics database (CTD): update 2023. Nucleic Acids Res. 2023;51(D1):D1257–62.


Google Scholar
 

Liu CJ, Hu FF, Xie GY, Miao YR, Li XW, Zeng Y, et al. GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief Bioinform. 2023. https://doi.org/10.1093/bib/bbac558.


Google Scholar
 

Xie H, Yang K, Qin C, Zhou X, Liu J, Nong J, et al. Sarcosine dehydrogenase as an immune infiltration-associated biomarker for the prognosis of hepatocellular carcinoma. J Cancer. 2024;15(1):149–65.


Google Scholar
 

Zongtao R, Xiaoyu Z, Jingya H. Expression and prognostic significance of Ferroptosis-related proteins SLC7A11 and GPX4 in renal cell carcinoma. Protein Pept Lett. 2023;30(10):868–76.


Google Scholar
 

Qin C, Qin H, Xie H, Li Y, Bi A, Liao X, et al. The role of MATN3 in cancer prognosis and immune infiltration across multiple tumor types. J Cancer. 2025;16(5):1519–37.


Google Scholar
 

Lei Z, Huan Y, Jing L, Ke W, Xiang C, Wei X, et al. Metabolomics-based approach to analyze the therapeutic targets and metabolites of a synovitis ointment for knee osteoarthritis. Curr Pharm Anal. 2023;19(3):222–34.


Google Scholar
 

Zhou X, Li TM, Luo JZ, Lan CL, Wei ZL, Fu TH, et al. CYP2C8 suppress Proliferation, Migration, invasion and Sorafenib resistance of hepatocellular carcinoma via PI3K/Akt/p27(kip1) axis. J Hepatocell Carcinoma. 2021;8:1323–38.


Google Scholar
 

Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021;49(13):7239–55.


Google Scholar
 

Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther. 2024;258:108640.


Google Scholar
 

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.


Google Scholar
 

Cordani M, Dando I, Ambrosini G, González-Menéndez P. Signaling, cancer cell plasticity, and intratumor heterogeneity. Cell Commun Signal. 2024;22(1):255.


Google Scholar
 

Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell. 2024;31(5):617–39.


Google Scholar
 

Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell. 2023;41(3):404–20.


Google Scholar
 

Gao X, Liu D-D, Liu J-Z, Wang R. TCGA-based analysis of oncogenic signaling pathways underlying oral squamous cell carcinoma. Oncol Transl Med. 2024;10(2):87–92.


Google Scholar
 

Wang Y, Wang J, Zeng T, Qi J. Data-mining-based biomarker evaluation and experimental validation of SHTN1 for bladder cancer. Cancer Genet. 2024;288–289:43–53.


Google Scholar
 

Liu H, Guo Z, Wang P. Genetic expression in cancer research: challenges and complexity. Gene Rep. 2024;37:102042.


Google Scholar
 

Liu H, Li Y, Karsidag M, Tu T, Wang P. Technical and biological biases in bulk transcriptomic data mining for cancer research. J Cancer. 2025;16(1):34–43.


Google Scholar
 

Yao Z, Chen J, Wang Y, Cao L. Bioinformatics analysis and validation of HAUS6 as a key prognostic gene in squamous cell carcinoma of the tongue. Arch Oral Biol. 2024;164:106000.


Google Scholar
 

Kim H, Nguyen NP, Turner K, Wu S, Gujar AD, Luebeck J, et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet. 2020;52(9):891–7.


Google Scholar
 

Shoshani O, Brunner SF, Yaeger R, Ly P, Nechemia-Arbely Y, Kim DH, et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature. 2021;591(7848):137–41.


Google Scholar
 

Lee JS. The mutational landscape of hepatocellular carcinoma. Clin Mol Hepatol. 2015;21(3):220–9.


Google Scholar
 

Yu J, Ling S, Hong J, Zhang L, Zhou W, Yin L, et al. TP53/mTORC1-mediated bidirectional regulation of PD-L1 modulates immune evasion in hepatocellular carcinoma. J Immunother Cancer. 2023. https://doi.org/10.1136/jitc-2023-007479.


Google Scholar
 

Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021;37(11):1012–27.


Google Scholar
 

Palmeri M, Mehnert J, Silk AW, Jabbour SK, Ganesan S, Popli P, et al. Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers. ESMO Open. 2022;7(1):100336.


Google Scholar
 

Zhu J, Zhang T, Li J, Lin J, Liang W, Huang W, et al. Association between tumor mutation burden (TMB) and outcomes of cancer patients treated with PD-1/PD-L1 inhibitions: a meta-analysis. Front Pharmacol. 2019;10:673.


Google Scholar
 

Miranda A, Hamilton PT, Zhang AW, Pattnaik S, Becht E, Mezheyeuski A, et al. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A. 2019;116(18):9020–9.


Google Scholar
 

Zhang Z, Wang ZX, Chen YX, Wu HX, Yin L, Zhao Q, et al. Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med. 2022;14(1):45.


Google Scholar
 

Wu H, Geng Q, Shi W, Qiu C. Comprehensive pan-cancer analysis reveals CCDC58 as a carcinogenic factor related to immune infiltration. Apoptosis. 2024;29(3–4):536–55.


Google Scholar
 

Wang Y, Xie Y, Qian L, Ding R, Pang R, Chen P, et al. RAB42 overexpression correlates with poor prognosis, immune cell infiltration and chemoresistance. Front Pharmacol. 2024;15:1445170.


Google Scholar
 

Xu X, Xu Y, Hu W, Hong W, Wang Y, Zhang X, et al. Stromal score is a promising index in tumor patients’ outcome determination. Heliyon. 2023;9(11):e22432.


Google Scholar
 

Wu Y, Ma J, Yang X, Nan F, Zhang T, Ji S, et al. Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell. 2024;187(6):1422–e3924.


Google Scholar
 

Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76(3):359–70.


Google Scholar
 

Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.


Google Scholar
 

Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, et al. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer. 2024;23(1):108.


Google Scholar
 

Liu H, Yang Z. Time management and personal efficiency in the age of computational and systems oncology. Comput Syst Oncol. 2024;4(1):e70001.


Google Scholar